Experimental Results on VAE

2015.11.25 산업공학특론 발표

Latent variable model

- Latent variables can extract the true explanatory factors of the (observed) original variables : generative model
- Latent variable space tends to a more simple space.

$$p(x) = \int p(x, z) \, dz \quad \text{where} \quad p(x, z) = p(x \mid z) p(z)$$
$$p(z) = \text{something simple} \qquad p(x \mid z) = g(z)$$

Latent variable model

- Use neural networks as the (generative) transformation g from the latent space to the original feature space.
- For both training and inference, latent variable z must be inferred.
- This is a generative model : inferring the latent variable is hard
- The posterior $p_{\theta}(z|x)$ is intractable

Variational inference

- How to infer the latent variable z
- Use $q_{\varphi}(z|x)$ as an alternative to $P_{\theta}(z|x)$
- Maximize the lower bound of the likelihood $p_{\theta}(x) \ge L(\theta, \varphi, x)$

$$\mathcal{L}(\theta, \phi, x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x, z) - \log q_{\phi}(z \mid x) \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) + \log p_{\theta}(z) - \log q_{\phi}(z \mid x) \right]$$

$$= -D_{\mathrm{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) + \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) \right]$$
regularization term reconstruction term

• Train this by using backpropgation

Variational Autoencoder(VAE)

Objective function: $\mathcal{L}(\theta, \phi, x) = -D_{\mathrm{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) + \mathbb{E}_{q_{\phi}(z \mid x)} \left[\log p_{\theta}(x \mid z) \right]$

Experimental Setup

- VAE : Both the encoder and decoder has one hidden layer of size 400
- The dimension of latent variables were varied from 3, 5, and 200.
- Data : MNIST
 - Training : 50000
 - Test : 10000
- Batch size : 512
- Epochs : 200

Data points according to likelihood probability (decoder) :global

¢	ð	8	4	7
8	¢	9	5	۲
0	۲	Ц	И	R
5	6	5	0	Ø
6	Q	ন্থ	হ	9

Data points according to likelihood probability (decoder) : conditional

t-sne projection of latent variables

• Latent dimension 3

t-sne projection of latent variables

• Latent dimension 5

t-sne projection of latent variables

Latent dimension 200

t-sne projection

Original

Limitations

• More training epochs are required

Todo

- Run unsupervised learning (1-class svm) with using latent variables of various dimensions
 - Compare with original data
- Test with artificial data that has particular types of anomalies
 - Make connections with latent variables and anomaly type
- Combine probabilities and latent variables to find true anomalies.
- Apply semi-supervised VAE.
 - With a handful of labels on anomalies, can semi-supervised learning work?

Referenences

- Kingma, Diederik P., et al. "Semi-supervised learning with deep generative models." *Advances in Neural Information Processing Systems*. 2014.
- Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).