A Recurrent Latent Variable Model for Sequential Data

Chung, Junyoung, et al. "A recurrent latent variable model for sequential data." *arXiv preprint arXiv:1506.02216* (2015). (Accepted NIPS 2015)

2015.11.16 산업공학특론 발표

Sequence Learning

• Dynamic Bayesian networks(DBN)

- Hidden Markov models(HMM)
- Kalman filters
- Now the mainstream is recurrent neural network(RNN) based
 - DBNs are simple (HMM state space are single set of mutually exclusive states)
 - Training DBNs are hard (MCMC)
 - RNNs have a richly distributed internal state representation
 - RNNs have flexible non-linear transition functions
 - RNNs can be trained by Backpropagation

Sequence Learning

- DBN : (generative) probabilistic modeling
- DBNs hidden state is expressed in random variables(stochastic) : randomness of hidden variables
- RNNs are entirely deterministic
- For simple dependencies, variability is low.
- For data that has complex dependencies, additional variability should be incorporated into the model.
 - Hidden variables can explain the variability.

Recurrent Neural Networks

- Sequence modelling with RNN
- $h_t = f_\theta(x_t, h_{t-1})$
- *f* : deterministic non-linear transition function
- Probability of a sequence (x_1, x_2, \dots, x_T)
- $p(x_1, x_2, \dots, x_T) = \prod_{t=1}^T p(x_t | x_{< t})$
- $p(x_t|x_{< t}) = g_{\tau}(h_{t-1})$

 $\begin{aligned} \mathbf{z}^{t} &= g(\mathbf{W}_{z}\mathbf{x}^{t} + \mathbf{R}_{z}\mathbf{y}^{t-1} + \mathbf{b}_{z}) & block \ input \\ \mathbf{i}^{t} &= \sigma(\mathbf{W}_{i}\mathbf{x}^{t} + \mathbf{R}_{i}\mathbf{y}^{t-1} + \mathbf{p}_{i} \odot \mathbf{c}^{t-1} + \mathbf{b}_{i}) & input \ gate \\ \mathbf{f}^{t} &= \sigma(\mathbf{W}_{f}\mathbf{x}^{t} + \mathbf{R}_{f}\mathbf{y}^{t-1} + \mathbf{p}_{f} \odot \mathbf{c}^{t-1} + \mathbf{b}_{f}) & forget \ gate \\ \mathbf{c}^{t} &= \mathbf{i}^{t} \odot \mathbf{z}^{t} + \mathbf{f}^{t} \odot \mathbf{c}^{t-1} & cell \ state \\ \mathbf{o}^{t} &= \sigma(\mathbf{W}_{o}\mathbf{x}^{t} + \mathbf{R}_{o}\mathbf{y}^{t-1} + \mathbf{p}_{o} \odot \mathbf{c}^{t} + \mathbf{b}_{o}) & output \ gate \\ \mathbf{y}^{t} &= \mathbf{o}^{t} \odot h(\mathbf{c}^{t}) & block \ output \end{aligned}$

Latent variable model

- Use neural networks as the (generative) transformation g from the latent space to the original feature space.
- For both training and inference, latent variable z must be inferred.
- This is a generative model : inferring the latent variable is hard
- The posterior $p_{\theta}(z|x)$ is intractable

Variational Autoencoder

Objective function: $\mathcal{L}(\theta, \phi, x) = -D_{\mathrm{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) + \mathbb{E}_{q_{\phi}(z \mid x)} \left[\log p_{\theta}(x \mid z) \right]$

Variational Recurrent Neural Network(VRNN)

- VRNN is a recurrent application of the VAE at every time step
- Latent variables can model noise in a structured way.

VRNN : Generation

• Prior on z_t

VRNN : Generation

• Recurrence

• Objective function

$$p(\mathbf{x}_{\leq T}, \mathbf{z}_{\leq T}) = \prod_{t=1}^{T} p(\mathbf{x}_t \mid \mathbf{z}_{\leq t}, \mathbf{x}_{< t}) p(\mathbf{z}_t \mid \mathbf{x}_{< t}, \mathbf{z}_{< t}).$$

VRNN : Inference

• Inference(encoding)

 h_{t-1} h_t

$$\mathbf{z}_t \mid \mathbf{x}_t \sim \mathcal{N}(\boldsymbol{\mu}_{z,t}, \operatorname{diag}(\boldsymbol{\sigma}_{z,t}^2))$$
, where $[\boldsymbol{\mu}_{z,t}, \boldsymbol{\sigma}_{z,t}] = \varphi_{\tau}^{\operatorname{enc}}(\varphi_{\tau}^{\mathbf{x}}(\mathbf{x}_t), \mathbf{h}_{t-1})$

Neural

networks

• Approximate posterior for variational inference

$$q(\mathbf{z}_{\leq T} \mid \mathbf{x}_{\leq T}) = \prod_{t=1}^{T} q(\mathbf{z}_t \mid \mathbf{x}_{\leq t}, \mathbf{z}_{< t})$$

VRNN : Learning

• Maximize the variational lower bound

$$\mathbb{E}_{q(\mathbf{z}_{\leq T} | \mathbf{x}_{\leq T})} \left[\sum_{t=1}^{T} \left(-\mathrm{KL}(q(\mathbf{z}_t \mid \mathbf{x}_{\leq t}, \mathbf{z}_{< t}) \| p(\mathbf{z}_t \mid \mathbf{x}_{< t}, \mathbf{z}_{< t}) \right) + \log p(\mathbf{x}_t \mid \mathbf{z}_{\leq t}, \mathbf{x}_{< t}) \right].$$

• Use the method as in VAE

Experimental Results

- Data
 - Blizzard : 300 hours of English by a single female speaker
 - TIMIT : 6300 English sentences read by 630 speakers
 - Onomatopoeia : 6738 non-linguistic human-made sounds by 51 speakers
 - Accent : English paragraphs read by 2046 speakers
 - IAM-OnDB : 13040 handwritten lines by 500 writers

• Output function : the output layer parameterizes the following distribution

- Gaussian distribution(Gauss)
- Gaussian Mixture model(GMM)

$$\hat{y}_t = \left(\hat{e}_t, \{\hat{w}_t^j, \hat{\mu}_t^j, \hat{\sigma}_t^j, \hat{\rho}_t^j\}_{j=1}^M\right) = b_y + \sum_{n=1}^N W_{h^n y} h_t^n$$

$$\Pr(x_{t+1}|y_t) = \sum_{j=1}^M \pi_t^j \mathcal{N}(x_{t+1}|\mu_t^j, \sigma_t^j, \rho_t^j)$$

$$e_{t} = \frac{1}{1 + \exp(\hat{e}_{t})} \implies e_{t} \in (0, 1)$$

$$\pi_{t}^{j} = \frac{\exp\left(\hat{\pi}_{t}^{j}\right)}{\sum_{j'=1}^{M} \exp\left(\hat{\pi}_{t}^{j'}\right)} \implies \pi_{t}^{j} \in (0, 1), \quad \sum_{j} \pi_{t}^{j} = 1$$

$$\mu_{t}^{j} = \hat{\mu}_{t}^{j} \implies \mu_{t}^{j} \in \mathbb{R}$$

$$\sigma_{t}^{j} = \exp\left(\hat{\sigma}_{t}^{j}\right) \implies \sigma_{t}^{j} > 0$$

$$\rho_{t}^{j} = tanh(\hat{\rho}_{t}^{j}) \implies \rho_{t}^{j} \in (-1, 1)$$

Experimental Results

• Model structure : single recurrent hidden layer with 2000 LSTM units

τ : parameters of the output function(GMM or Gaussian)

Experimental Results

Table 1: Average log-likelihood on the test (or validation) set of each task.					
	Speech modelling				Handwriting
Models	Blizzard	TIMIT	Onomatopoeia	Accent	IAM-OnDB
RNN-Gauss	3539	-1900	-984	-1293	1016
RNN-GMM	7413	26643	18865	3453	1358
VRNN-I-Gauss	≥ 8933	≥ 28340	≥ 19053	≥ 3843	≥ 1332
	≈ 9188	≈ 29639	≈ 19638	≈ 4180	≈ 1353
VRNN-Gauss	≥ 9223	≥ 28805	≥ 20721	≥ 3952	≥ 1337
	pprox 9516	pprox 30235	pprox 21332	≈ 4223	≈ 1354
VRNN-GMM	≥ 9107	≥ 28982	≥ 20849	≥ 4140	≥ 1384
	≈ 9392	≈ 29604	≈ 21219	pprox 4319	pprox 1384

- RNN : standard RNN
- VRNN : variational RNN
- VRNN-I-Gauss : without conditional prior (standard normal prior)

 x_t

 $egin{aligned} & z_t \sim N(0,1) \ & \mathbf{z}_t \sim \mathcal{N}(oldsymbol{\mu}_{0,t}, ext{diag}(oldsymbol{\sigma}_{0,t}^2)) ext{, where } [oldsymbol{\mu}_{0,t}, oldsymbol{\sigma}_{0,t}] = arphi_{ au}^{ ext{prior}}(\mathbf{h}_{t-1}) \end{aligned}$

Conclusion

- Propose a general framework for sequence modelling with latent random variables into a RNN.
- Introduction of latent random variables can provide significant improvements in modelling highly structured sequences.
- Temporal conditioning for latent random variables improves performance

Referenences

- Chung, Junyoung, et al. "A recurrent latent variable model for sequential data." *arXiv preprint arXiv:1506.02216* (2015). (Accepted NIPS 2015)
- Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." *arXiv preprint arXiv:1312.6114* (2013).