Semi-supervised Learning with Deep Generative Models

Kingma, Diederik P., et al. "Semi-supervised learning with deep generative models." *Advances in Neural Information Processing Systems.* 2014.

2015.11.13 산업공학특론 발표

Latent variable model

- Latent variables can extract the true explanatory factors of the (observed) original variables : generative model
- Latent variable space tends to a more simple space.

$$p(x) = \int p(x, z) \, dz \quad \text{where} \quad p(x, z) = p(x \mid z) p(z)$$
$$p(z) = \text{something simple} \qquad p(x \mid z) = g(z)$$

Latent variable model

- Use neural networks as the (generative) transformation g from the latent space to the original feature space.
- For both training and inference, latent variable z must be inferred.
- This is a generative model : inferring the latent variable is hard
- The posterior $p_{\theta}(z|x)$ is intractable

Variational inference

- How to infer the latent variable z
- Use $q_{\varphi}(z|x)$ as an alternative to $P_{\theta}(z|x)$
- Maximize the lower bound of the likelihood $p_{\theta}(x) \ge L(\theta, \varphi, x)$

$$\mathcal{L}(\theta, \phi, x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x, z) - \log q_{\phi}(z \mid x) \right]$$

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) + \log p_{\theta}(z) - \log q_{\phi}(z \mid x) \right]$$

$$= -D_{\mathrm{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) + \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x \mid z) \right]$$
regularization term reconstruction term

• Train this by using backpropgation

Variational Autoencoder(VAE)

Objective function: $\mathcal{L}(\theta, \phi, x) = -D_{\mathrm{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) + \mathbb{E}_{q_{\phi}(z \mid x)} \left[\log p_{\theta}(x \mid z) \right]$

Variational Autoencoder(VAE)

• Since we assume that $P_{\theta}(z|x)$ is a complex non-closed function, Monte Carlo methods should be used.

$$\begin{aligned} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &= \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[-\log q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) + \log p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}) \right] \\ \widetilde{\mathcal{L}}^{A}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &= \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \mathbf{z}^{(i,l)}) - \log q_{\boldsymbol{\phi}}(\mathbf{z}^{(i,l)}|\mathbf{x}^{(i)}) \\ z^{(i,l)} \sim q_{\boldsymbol{\phi}}(\boldsymbol{z}|\boldsymbol{x}) \end{aligned}$$

- We can't do proper backpropagation
 - The parameter φ is involved in the sampling procedure that can't be differentiated.

Reparameterization trick

- Parametrize the distribution $q_{\varphi}(z|x)$ by deep neural networks and do Monte Carlo.
- $q_{\varphi}(z|x) = N(z|\mu_z(x), \sigma_z(x))$
- $\mathbf{z} = \mu_z(x) + \sigma_z(x) \boldsymbol{\varepsilon}_z$ where $\boldsymbol{\varepsilon}_z \sim N(0,1)$

$$\begin{aligned} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &= \mathbb{E}_{q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x})} \left[-\log q_{\boldsymbol{\phi}}(\mathbf{z}|\mathbf{x}) + \log p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}) \right] \\ \widetilde{\mathcal{L}}^{A}(\boldsymbol{\theta}, \boldsymbol{\phi}; \mathbf{x}^{(i)}) &= \frac{1}{L} \sum_{l=1}^{L} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}, \mathbf{z}^{(i,l)}) - \log q_{\boldsymbol{\phi}}(\mathbf{z}^{(i,l)}|\mathbf{x}^{(i)}) \\ \text{where} \quad \mathbf{z}^{(i,l)} &= g_{\boldsymbol{\phi}}(\boldsymbol{\epsilon}^{(i,l)}, \mathbf{x}^{(i)}) \quad \text{and} \quad \boldsymbol{\epsilon}^{(l)} \sim p(\boldsymbol{\epsilon}) \end{aligned}$$

• Sampling doesn't involve the parameter.

Variational Autoencoder

Objective function: $\mathcal{L}(\theta, \phi, x) = -D_{\mathrm{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) + \mathbb{E}_{q_{\phi}(z \mid x)} \left[\log p_{\theta}(x \mid z) \right]$

Semi-supervised learning with deep generative models

- Semi-supervised learning : few labeled data, abundant labeled data
- Develop a generative model that combines probabilistic modelling and deep neural networks
 - Generative Latent-feature model(M1) : used to extract features
 - Generative semi-supervised model(M2) : used for classification
- Implement variational autoencoders in each model

Generative Latent-feature model(M1)

- Unsupervised feature learning using a generative model $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I}); \qquad p_{\theta}(\mathbf{x}|\mathbf{z}) = f(\mathbf{x}; \mathbf{z}, \boldsymbol{\theta})$
- *f* is a non-linear transformation of the latent variable z with parameters θ : use deep neural networks
- Exactly equal to the variational autoencoder

Generative semi-supervised model(M2)

Semi-supervised feature learning using a generative model

 $p(y) = \operatorname{Cat}(y|\boldsymbol{\pi}); \qquad p(\mathbf{z}) = \mathcal{N}(\mathbf{z}|\mathbf{0}, \mathbf{I});$

 $p_{\theta}(\mathbf{x}|y, \mathbf{z}) = f(\mathbf{x}; y, \mathbf{z}, \boldsymbol{\theta}),$

- Variational autoencoder with an additional information on labels
 - If the label is known : plug it in
 - If the label is unknown : an additional latent variable

Stack of models M1, M2

• Train generative semi-supervised model(M2) on unsupervised features *z*1 from latent feature model (M1)

VAE on each model

M1: $q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(\mathbf{x}), \operatorname{diag}(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x}))),$

Forward propagation Forward propagation \hat{x} $q_{\phi}(z \mid x)$ $p_{\theta}(x \mid z)$

M2: $q_{\phi}(\mathbf{z}|y, \mathbf{x}) = \mathcal{N}(\mathbf{z}|\boldsymbol{\mu}_{\phi}(y, \mathbf{x}), \operatorname{diag}(\boldsymbol{\sigma}_{\phi}^{2}(\mathbf{x}))); \ q_{\phi}(y|\mathbf{x}) = \operatorname{Cat}(y|\boldsymbol{\pi}_{\phi}(\mathbf{x})),$

- Lowerbound objective for latent feature model(M1) $\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|\mathbf{z})\right] - KL[q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z})] = -\mathcal{J}(\mathbf{x}),$
- Lowerbound objective for generative semi-supervised model(M2)
 - Labeled

 $\log p_{\theta}(\mathbf{x}, y) \geq \mathbb{E}_{q_{\phi}(\mathbf{z}|\mathbf{x}, y)} \left[\log p_{\theta}(\mathbf{x}|y, \mathbf{z}) + \log p_{\theta}(y) + \log p(\mathbf{z}) - \log q_{\phi}(\mathbf{z}|\mathbf{x}, y)\right] = -\mathcal{L}(\mathbf{x}, y),$

• Unlabeled

$$\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{q_{\phi}(y,\mathbf{z}|\mathbf{x})} \left[\log p_{\theta}(\mathbf{x}|y,\mathbf{z}) + \log p_{\theta}(y) + \log p(\mathbf{z}) - \log q_{\phi}(y,\mathbf{z}|\mathbf{x})\right]$$
$$= \sum_{y} q_{\phi}(y|\mathbf{x})(-\mathcal{L}(\mathbf{x},y)) + \mathcal{H}(q_{\phi}(y|\mathbf{x})) = -\mathcal{U}(\mathbf{x}).$$

Combined

$$\mathcal{J} = \sum_{(\mathbf{x}, y) \sim \widetilde{p}_l} \mathcal{L}(\mathbf{x}, y) + \sum_{\mathbf{x} \sim \widetilde{p}_u} \mathcal{U}(\mathbf{x})$$

Assume independence between y and z

M1, M2 training

Algorithm 1 Learning in model M1

while generativeTraining() do $\mathcal{D} \leftarrow \text{getRandomMiniBatch}()$ $\mathbf{z}_i \sim q_{\phi}(\mathbf{z}_i | \mathbf{x}_i) \quad \forall \mathbf{x}_i \in \mathcal{D}$ $\mathcal{J} \leftarrow \sum_n \mathcal{J}(\mathbf{x}_i)$ $(\mathbf{g}_{\theta}, \mathbf{g}_{\phi}) \leftarrow (\frac{\partial \mathcal{J}}{\partial \theta}, \frac{\partial \mathcal{J}}{\partial \phi})$ $(\theta, \phi) \leftarrow (\theta, \phi) + \Gamma(\mathbf{g}_{\theta}, \mathbf{g}_{\phi})$ end while while discriminativeTraining() do $\mathcal{D} \leftarrow \text{getLabeledRandomMiniBatch}()$ $\mathbf{z}_i \sim q_{\phi}(\mathbf{z}_i | \mathbf{x}_i) \quad \forall \{\mathbf{x}_i, y_i\} \in \mathcal{D}$ trainClassifier($\{\mathbf{z}_i, y_i\}$) end while

Algorithm 2 Learning in model M2

while training() do $\mathcal{D} \leftarrow \text{getRandomMiniBatch}()$ $y_i \sim q_{\phi}(y_i | \mathbf{x}_i) \quad \forall \{\mathbf{x}_i, y_i\} \notin \mathcal{O}$ $\mathbf{z}_i \sim q_{\phi}(\mathbf{z}_i | y_i, \mathbf{x}_i)$ $\mathcal{J}^{\alpha} \leftarrow \text{eq. (9)}$ $(\mathbf{g}_{\theta}, \mathbf{g}_{\phi}) \leftarrow (\frac{\partial \mathcal{L}^{\alpha}}{\partial \theta}, \frac{\partial \mathcal{L}^{\alpha}}{\partial \phi})$ $(\theta, \phi) \leftarrow (\theta, \phi) + \Gamma(\mathbf{g}_{\theta}, \mathbf{g}_{\phi})$ end while

Experimental results

Table 1: Benchmark results of semi-supervised classification on MNIST with few labels.

\overline{N}	NN	CNN	TSVM	CAE	MTC	AtlasRBF	M1+TSVM	M2	M1+M2
100	25.81	22.98	16.81	13.47	12.03	8.10 (± 0.95)	$11.82 (\pm 0.25)$	$11.97 (\pm 1.71)$	3.33 (± 0.14)
600	11.44	7.68	6.16	6.3	5.13	_	$5.72 (\pm 0.049)$	$4.94 (\pm 0.13)$	$2.59 (\pm 0.05)$
1000	10.7	6.45	5.38	4.77	3.64	$3.68 (\pm 0.12)$	$4.24 (\pm 0.07)$	$3.60 (\pm 0.56)$	2.40 (± 0.02)
3000	6.04	3.35	3.45	3.22	2.57	_	$3.49 (\pm 0.04)$	$3.92 (\pm 0.63)$	2.18 (± 0.04)

• CNN : convolutional neural network

• TSVM : transductive SVM

.

- CAE : contrastive autoencoder
- MTC : Manifold tangent classifier (CAE based manifold learning method)
- AtlasRBF (graph-based semi-supervised learning method)
- TSVM with M1 features are better than TSVM with original features
- M1+M2 shows the best performance.
- M1 : MLP with two hidden layer with 600 hidden units, latent variable 50 dimensions.
- M2 : MLP with one hidden layer with 500 hidden units, latent variable 50 dimensions.

Conditional Generation

З З з З З З 3 3 З З 3 3 3 3 3 3

(a) Handwriting styles for MNIST obtained by fixing the class label and varying the 2D latent variable z

Conditional Generation

(b) MNIST analogies

(c) SVHN analogies

Experimental Results on other datasets

- NORB dataset : images of 50 toys belonging to 5 generic categories
- SVHN datset : street view house numbers dataset

Table 2: Semi-supervised classification on the SVHN dataset with 1000 labels.

KNN	TSVM	M1+KNN	M1+TSVM	M1+M2
77.93	66.55	65.63	54.33	36.02
(± 0.08)	(± 0.10)	(± 0.15)	(± 0.11)	(± 0.10)

Table 3: Semi-supervised classification on the NORB dataset with 1000 labels.

KNN	TSVM	M1+KNN	M1+TSVM
78.71	26.00	65.39	18.79
(± 0.02)	(± 0.06)	(± 0.09)	(± 0.05)

On anomaly detection

- If labels on anomalies can be obtained, M1+M2 model can be used.
- Conditional generation with fixed labels can reveal types of variations in each anomaly label.
- Conditional generation with fixed latent variables can reveal the characteristics and structures of a given latent space among normal and different types of anomalies.
- The paper used the same number of instances for each class, so for unbalanced data, other treatments would be required.

Referenences

- Kingma, Diederik P., et al. "Semi-supervised learning with deep generative models." *Advances in Neural Information Processing Systems*. 2014.
- Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).