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Introduction

• Time-series data

– a sequence of data points, typically consisting of successive measurements 

made over a time interval

– These days, these kinds of data are widely used in many different area

• Medicine (Tormene et al., 2009)

• Finance (Rada, 2008)

• Bioinformatics (Aach & Church, 2001)

• Univariate time series data have been well-studied

– Distance measure: Euclidean, DTW,…

– Representation: DWT, DFT, SAX, …

– 1NN-DTW method is difficult to defeat
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Introduction

• Multivariate Time-series data

– A kind of time series data that consists of two or more variables

• But, MTS(Multivariate Time Series) is not well-studied

– It is very different from univariate time series

– The main difference is a correlation among variables

• Two approaches of MTS similarity measure

– Compare the TS variable by variable

– Compare the TS as a whole
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Introduction

• In this research,

– We conducted a classification problem by using DTW and voting method

– 3 voting method

• Voting from each attribute

• Voting from projected sequence on hyperplane which is spanned by principal 

components(PCs)

• Voting based on hyperplane similarity spanned by PCs.
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BACKGROUND
Section2
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Background

• Background Contents

– DTW

– PCA

– History of MTS classification problem
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EXPERIMENTS
Section3
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Proposed Methods

• 1. DTW + 1NN classifier for each variable and vote
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Test data(var 1)

Training data(var 2)

DTW

1(A)

2(B)

3(C)

4(A)

Test data(var 2)

DTW

4(D)

3(B)

5(A)

2(C)

Class # of var

A 5

B 3

C 2

D 0

Test data is classified to A class

Training data(var 1)
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Proposed Methods

• Method (1) is simple and easy to understand

– But it does not include anything about correlation structure

– Also, if each variable have correlation structure

• Some variables can overly cause influence to vote results

• We need two constraints

– Sequences need to include correlation structure

– Variable for voting should be nearly independent

– How about using PCA?
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Proposed Method

• Also, to avoid ‘the longer sequence, the longer distance’ 

– We divided the DTW distance by sequence length
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Proposed Methods

• 2. Use PCA projected sequence. Then, DTW+1NN+voting classifier
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Proposed Methods

• 3. Project to the coordinates and use conventional classifier (Not yet)

– First, calculate the DTW distance matrix for training data

– Projected to the coordinate space (How? MDS??)

– Use conventional classifier
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Proposed Method

• (Sub) How about using Krzanowski distance(1-SPCA)?

– The distance of two hyper plane which is made by PCs?

15

PCs from data 1 PCs from data 2

Subspace1: subspace spanned by PCs from data1
Subspace2: subspace spanned by PCs from data2
Krzanowski distance: Distance between Subspace1 and Subsapce2



Je Hyuk Lee, SNUDec 02, 2015

Time series data mining
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Time series
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Time series

Extract features

Task

Information

Time series

Discretization Modeling

Modeling

Task

InformationInformation
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Experiment

• Dataset
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Name # of classes # of 
Variables Length Training 

size Test size

UCI

AUSLAN 95 22 45~136 (1140) (1425)

Pendigits 10 2 8 300 10692

Japanese
Vowels 9 12 7-29 270 370

Arabic Digits 10 13 4~93 6600 2200

Character 
Trajectories 20 3 109~205 (2058) (800)

ECG 2 2 39~152 100 100

Wafer 2 6 104~198 298 896
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Experiment

• Comparing the experimental results for each data set

• 2-class classification results

– Select 2 classes randomly (10times) and averaging the accuracy
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RESULTS
Section4
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Experiment

• Accuracy Results
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Name DTW+1NN
(All)

DTW+PCA
(All)

PCA coeff
(All)

DTW+1NN
(2-class)

DTW+PCA
(2-class)

PCA coeff
(2-class)

AUSLAN 40.35% 11.37%
(2PCs)

43.58%
(2PCs) 73.33% 71%

(3PCs)
73%

(4PCs)

Japanese
Vowels 73.78% 28.92%

(1 PCs)
42.7%
(2PCs) 76.17% 83.96%

(2PCs)
75.99%
(4PCs)

Arabic Digits 17.36%
(1PC) 99.55% 96.59%

(1PC)
98.41%
(2PCs)

Character 
Trajectories 85.97% 86.16%

(3PCs)
30.61%
(2PCs) 89.93% 85.78%

(3PCs)
67.89%
(1PC)

ECG 73.00% 75.00%
(2PCs)

67%
(1PC) - - -

Wafer 93.97% 94.08%
(1PC)

89.4%
(4PCs) - - -
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Experiment

• Classification Time Results
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Name DTW+1NN
(All)

DTW+PCA
(All)

PCA coeff
(All)

DTW+1NN
(2-class)

DTW+PCA
(2-class)

PCA coeff
(2-class)

AUSLAN 5041.41s 939.15s 22.64s 4.26s 6.43s 0.37s

Japanese
Vowels 160.60s 11.02s 2.20s 8.37s 1.46s 0.24s

Arabic Digits (>2.5days) 487.40s 379.12s 8.40s

Character 
Trajectories 8121.11s 7406.07s 16.83s 91.72s 57.93s 0.43s

ECG 18.03s 16.33s 0.40s - - -

Wafer 1524.99s 361.52s 4.54s - - -
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Conclusion

• For multi-class problem, the proposed method’s performance is poor

– For attribute wise voting method, its performance is not so bad

– But, for PCA-based voting method, its performance is similar to random 

guessing

• But, for 2-class problem, their performance is almost same

• For multi-class problem,

– MTS correlation structure might affect the performance difference

– How might be?

• When they are applied to real data, how might their performance be?

23



Je Hyuk Lee, SNUDec 02, 2015

Further Research

• To consider the correlation structure, the PCA-DTW method would be 

proper

– Instead of PCA-DTW voting, how about calculating weighted DTW distance?

– Weight is determined by each PCs variance

24

PC1
PC2

PC3

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑤𝑤1𝐷𝐷𝐷𝐷𝐷𝐷1
2 + 𝑤𝑤2𝐷𝐷𝐷𝐷𝐷𝐷2

2 + 𝑤𝑤3𝐷𝐷𝐷𝐷𝐷𝐷3
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