## DTW-based voting for multivariate time-series classification

#### Dec 02, 2015

#### Je Hyuk Lee Dept of Industrial Engineering, SNU

#### Contents

- 1. Introduction
- 2. Background
- 3. Experiment
- 4. Results
- 5. Conclusion

# Section1 INTRODUCTION

### Introduction

#### • Time-series data

- a sequence of data points, typically consisting of successive measurements made over a time interval
- These days, these kinds of data are widely used in many different area
  - Medicine (Tormene et al., 2009)
  - Finance (Rada, 2008)
  - Bioinformatics (Aach & Church, 2001)
- Univariate time series data have been well-studied
  - Distance measure: Euclidean, DTW,...
  - Representation: DWT, DFT, SAX, ...
  - 1NN-DTW method is difficult to defeat

### Introduction

#### • Multivariate Time-series data

- A kind of time series data that consists of two or more variables
- But, MTS(Multivariate Time Series) is not well-studied
  - It is very different from univariate time series
  - The main difference is a correlation among variables
- Two approaches of MTS similarity measure
  - Compare the TS variable by variable
  - Compare the TS as a whole

## Introduction

#### • In this research,

- We conducted a classification problem by using DTW and voting method
- 3 voting method
  - Voting from each attribute
  - Voting from projected sequence on hyperplane which is spanned by principal components(PCs)
  - Voting based on hyperplane similarity spanned by PCs.

# Section2 BACKGROUND

## Background

- Background Contents
  - DTW
  - PCA
  - History of MTS classification problem

## Section3 **EXPERIMENTS**

#### **Proposed Methods**

• 1. DTW + 1NN classifier for each variable and vote



## **Proposed Methods**

- Method (1) is simple and easy to understand
  - But it does not include anything about correlation structure
  - Also, if each variable have correlation structure
    - Some variables can overly cause influence to vote results
- We need two constraints
  - Sequences need to include correlation structure
  - Variable for voting should be nearly independent
  - How about using PCA?

#### **Proposed Method**

- Also, to avoid 'the longer sequence, the longer distance'
  - We divided the DTW distance by sequence length



#### **Proposed Methods**

• 2. Use PCA projected sequence. Then, DTW+1NN+voting classifier

|    | <b>v1</b> | v2  | ••• | vM  |          |            |       |   |             | <b>v1</b>   | v2        | ••• | vM        |
|----|-----------|-----|-----|-----|----------|------------|-------|---|-------------|-------------|-----------|-----|-----------|
| t1 | a11       | a12 |     | a1M | 3-       |            |       | _ | t1          | a11'        | a12'      |     | a1M'      |
| t2 | a21       | a22 |     | a2M | 2 -      |            |       | - | t2          | a21'        | a22'      |     | a2M'      |
| t3 | a31       | a32 |     | a3M |          |            |       |   | t3          | a31'        | a32'      |     | a3M'      |
| t4 | a41       | a42 |     | a4M | -1 -2 -2 |            | •     | - | t4          | a41'        | a42'      |     | a4M'      |
|    |           |     |     |     | -3 -     | · · ·      |       | - |             |             |           |     |           |
| tN | aN1       | a2N |     | aMN | -4       | -3 -2 -1 0 | 1 2 3 | 4 | tN          | aN1'        | a2N'      |     | aMN'      |
|    |           |     |     |     |          |            |       |   |             | ➡           | ₽         |     | ➡         |
|    |           |     |     |     |          |            |       |   | $\setminus$ | $\bigwedge$ | $\bigvee$ | ~   | $\bigvee$ |

### **Proposed Methods**

- 3. Project to the coordinates and use conventional classifier (Not yet)
  - First, calculate the DTW distance matrix for training data
  - Projected to the coordinate space (How? MDS??)
  - Use conventional classifier



### **Proposed Method**

- (Sub) How about using Krzanowski distance(1-SPCA)?
  - The distance of two hyper plane which is made by PCs?





PCs from data 1



Subspace1: subspace spanned by PCs from data1Subspace2: subspace spanned by PCs from data2Krzanowski distance: Distance between Subspace1 and Subsapce2

### Time series data mining



#### • Dataset

|     | Name                      | # of classes | # of<br>Variables | Length  | Training<br>size | Test size |
|-----|---------------------------|--------------|-------------------|---------|------------------|-----------|
|     | AUSLAN                    | 95           | 22                | 45~136  | (1140)           | (1425)    |
|     | Pendigits                 | 10           | 2                 | 8       | 300              | 10692     |
| UCI | Japanese<br>Vowels        | 9            | 12                | 7-29    | 270              | 370       |
|     | Arabic Digits             | 10           | 13                | 4~93    | 6600             | 2200      |
|     | Character<br>Trajectories | 20           | 3                 | 109~205 | (2058)           | (800)     |
|     | ECG                       | 2            | 2                 | 39~152  | 100              | 100       |
|     | Wafer                     | 2            | 6                 | 104~198 | 298              | 896       |

## **Experiment**

- Comparing the experimental results for each data set
- 2-class classification results
  - Select 2 classes randomly (10times) and averaging the accuracy

## Section4 **RESULTS**

#### • Accuracy Results

| Name                      | DTW+1NN<br>(All) | DTW+PCA<br>(All)  | PCA coeff<br>(All) | DTW+1NN<br>(2-class) | DTW+PCA<br>(2-class) | PCA coeff<br>(2-class) |
|---------------------------|------------------|-------------------|--------------------|----------------------|----------------------|------------------------|
| AUSLAN                    | 40.35%           | 11.37%<br>(2PCs)  | 43.58%<br>(2PCs)   | 73.33%               | 71%<br>(3PCs)        | 73%<br>(4PCs)          |
| Japanese<br>Vowels        | 73.78%           | 28.92%<br>(1 PCs) | 42.7%<br>(2PCs)    | 76.17%               | 83.96%<br>(2PCs)     | 75.99%<br>(4PCs)       |
| Arabic Digits             |                  |                   | 17.36%<br>(1PC)    | 99.55%               | 96.59%<br>(1PC)      | 98.41%<br>(2PCs)       |
| Character<br>Trajectories | 85.97%           | 86.16%<br>(3PCs)  | 30.61%<br>(2PCs)   | 89.93%               | 85.78%<br>(3PCs)     | 67.89%<br>(1PC)        |
| ECG                       | 73.00%           | 75.00%<br>(2PCs)  | 67%<br>(1PC)       | -                    | -                    | -                      |
| Wafer                     | 93.97%           | 94.08%<br>(1PC)   | 89.4%<br>(4PCs)    | -                    | -                    | -                      |

#### • Classification Time Results

| Name                      | DTW+1NN<br>(All) | DTW+PCA<br>(All) | PCA coeff<br>(All) | DTW+1NN<br>(2-class) | DTW+PCA<br>(2-class) | PCA coeff<br>(2-class) |
|---------------------------|------------------|------------------|--------------------|----------------------|----------------------|------------------------|
| AUSLAN                    | 5041.41s         | 939.15s          | 22.64s             | 4.26s                | 6.43s                | 0.37s                  |
| Japanese<br>Vowels        | 160.60s          | 11.02s           | 2.20s              | 8.37s                | 1.46s                | 0.24s                  |
| Arabic Digits             | (>2.5days)       |                  | 487.40s            |                      | 379.12s              | 8.40s                  |
| Character<br>Trajectories | 8121.11s         | 7406.07s         | 16.83s             | 91.72s               | 57.93s               | 0.43s                  |
| ECG                       | 18.03s           | 16.33s           | 0.40s              | -                    | -                    | -                      |
| Wafer                     | 1524.99s         | 361.52s          | 4.54s              | -                    | -                    | -                      |

# Section5 CONCLUSION

## Conclusion

- For multi-class problem, the proposed method's performance is poor
  - For attribute wise voting method, its performance is not so bad
  - But, for PCA-based voting method, its performance is similar to random guessing
- But, for 2-class problem, their performance is almost same
- For multi-class problem,
  - MTS correlation structure might affect the performance difference
  - How might be?
- When they are applied to real data, how might their performance be?

### **Further Research**

- To consider the correlation structure, the PCA-DTW method would be proper
  - Instead of PCA-DTW voting, how about calculating weighted DTW distance?
  - Weight is determined by each PCs variance



#### References

- Aach, John, and George M. Church. "Aligning gene expression time series with time warping algorithms." *Bioinformatics* 17.6 (2001): 495-508.
- Abonyi, Janos, et al. "Principal component analysis based time series segmentation—application to hierarchical clustering for multivariate process data." *Proc, of the IEEE Int. Conf. on Computational Cybernetics.* 2003.
- Bankó, Zoltán, and János Abonyi. "Correlation based dynamic time warping of multivariate time series." *Expert Systems with Applications* 39.17 (2012): 12814-12823.
- Baydogan, Mustafa Gokce, George Runger, and Eugene Tuv. "A bag-of-features framework to classify time series." *Pattern Analysis and Machine Intelligence, IEEE Transactions on* 35.11 (2013): 2796-2802.
- Baydogan, Mustafa Gokce, and George Runger. "Learning a symbolic representation for multivariate time series classification." *Data Mining and Knowledge Discovery* 29.2 (2014): 400-422.
- Krzanowski, W. J. "Between-groups comparison of principal components." *Journal of the American Statistical Association* 74.367 (1979): 703-707.
- Lichman, M. (2013). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
- Olszewski RT (2012) http://www.cs.cmu.edu/~bobski/
- Rada, Roy. "Expert systems and evolutionary computing for financial investing: A review." *Expert systems with applications* 34.4 (2008): 2232-2240.
- Tormene, Paolo, et al. "Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation." *Artificial intelligence in medicine* 45.1 (2009): 11-34.
- Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen and Gustavo Batista (2015). *The UCR Time Series Classification Archive.* URL<u>www.cs.ucr.edu/~eamonn/time\_series\_data/</u>