Multivariate time series classification

Nov 25, 2015

Je Hyuk Lee Dept of Industrial Engineering, SNU

Contents

- 1. Proposed methods
- 2. Experiments (On-going)
 - Data
 - Results

- In this semester, I spent most of my time in shapelet classification approach
 - How to extend this concept to multivariate case?
- But, difficult to apply shapelet to multivariate classification experiment
 - It has very different time length even in the same dataset(7~29, 4~93)
 - Shapelet can be well made in the same length assumption
 - Also, some data points are too short to apply this concept

• 1. DTW + 1NN classifier for each variable. Then vote.

- Method (1) is simple and easy to understand
 - But it does not include anything about correlation structure
 - Also, if each variable have correlation structure
 - Some variables can overly cause influence to vote results
- We need two constraints
 - Sequences need to include correlation structure
 - Variable for voting should be nearly independent
 - How about using PCA?

• 2. Use PCA projected sequence. Then, DTW+1NN+voting classifier

	v1	v2	•••	vM					v1	v2	•••	vM
t1	a11	a12		a1M	3-	•	•	t1	a11'	a12'		a1M'
t2	a21	a22		a2M	2 -		-	t2	a21'	a22'		a2M'
t3	a31	a32		a3M	•		-	t3	a31'	a32'		a3M'
t4	a41	a42		a4M	-1 -2 -2 -		-	t4	a41'	a42'		a4M'
					-3 -		_					
tN	aN1	a2N		aMN	-4	-3 -2 -1 0 1 2	2 3 4	tN	aN1'	a2N'		aMN'
									₽	₽		₽
								\backslash	\bigwedge	\bigvee	`	\bigvee

• 3. Project to the coordinates and use conventional classifier (Not yet)

- First, calculate the DTW distance matrix for training data
- Projected to the coordinate space (How? MDS??)
- Use conventional classifier

- (Sub) How about using Krzanowski distance(1-SPCA)?
 - The distance of two hyper plane which is made by PCs?

PCs from data 1

Subspace1: subspace spanned by PCs from data1Subspace2: subspace spanned by PCs from data2Krzanowski distance: Distance between Subspace1 and Subsapce2

Experiment

• Dataset

	Name	# of classes	# of Variables	Length	Training size	Test size
	AUSLAN	95	22	45~136		
	Pendigits	10	2	8	300	10692
UCI	Japanese Vowels	9	12	7-29	270	370
	Arabic Digits	10	13	4~93	6600	2200
	Character Trajectories	20	3	109~205	(2058)	(800)
	ECG	2	2	39~152	100	100
	Wafer	2	6	104~198	298	896

• Accuracy Results

Name	DTW+1NN	DTW+PCA	PCA coeff
AUSLAN			
Pendigits			
Japanese Vowels	73.78%	28.92% (1 PCs)	42.7% (2PCs)
Arabic Digits			17.36% (1PC)
Character Trajectories	84.13%	20.75% (1PC)	12.43% (1PC)
ECG			
Wafer			

Experiment

• Classification Time Results

Name	DTW+1NN	DTW+PCA	PCA coeff
AUSLAN			
Pendigits			
Japanese Vowels	160.60sec	11.02sec (2 PCs)	2.20sec (2PCs)
Arabic Digits	(>1.5days)		487.40sec (1PC)
Character Trajectories	7043.54sec	1527.75sec (1PC)	30.99secc (1PC)
ECG			
Wafer			

To be

- Do the unfinished experiment
- Compare the results to the pre-studied case
- For speed up, apply the constrained DTW method
- How about 2-class cases?
- Would variable selection cause influence to the performance in method 1?
- Would the 1-NN classifier is not suitable?