Multivariate time series classification

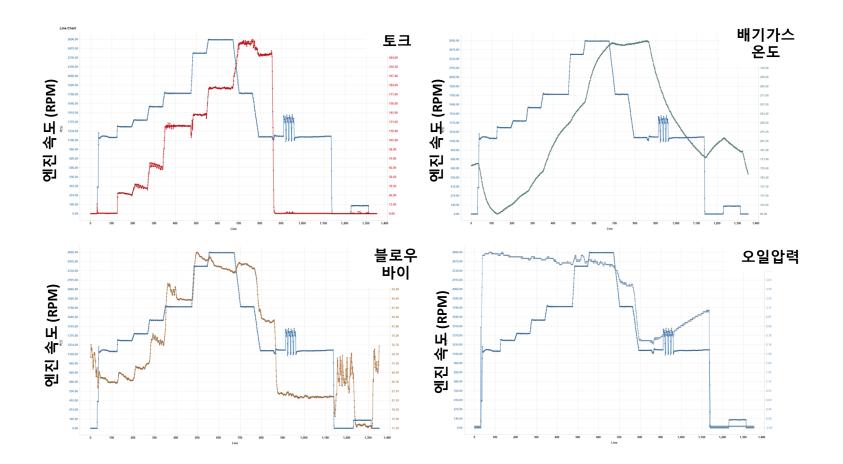
Oct 12, 2015

Je Hyuk Lee Dept of Industrial Engineering, SNU

Data

Characteristics

- 엔진 속도를 step으로 변화시키면서, 여러 항목이 어떻게 변화하는지 측정
- Multivariate Time series data



Questions

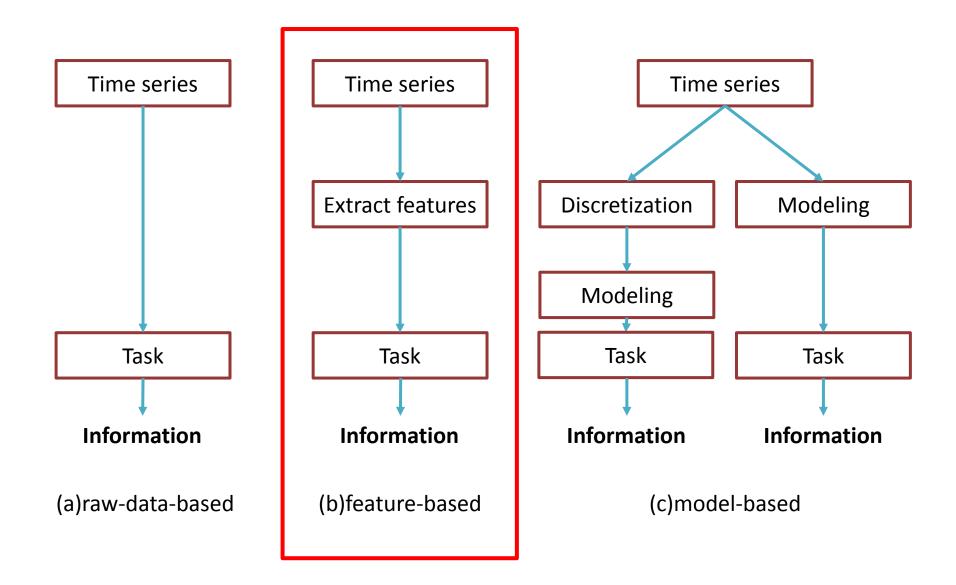
- 1. How to deal with multivariate time series data?
 - Before the anomaly detection problem, how to solve classification problem?
 - classify multivariate time series
 - Spiegel, Stephan et al.(2011): classify multivariate time series
- 2. How to apply shapelet method to multivariate time series data?
 - Ghalwash et al.(2012): multi-shapelet in bioinformatics
 - But what if the important feature is not obvious?
- 3. What if the important feature is not in each step?
 - Only extracted features for each step
 - In the gap between two steps
 - Spiegel, Stephan et al.(2011): Segmentation and clustering using SVD
- 4. It has various different length. How to deal with this problem?

- ...

Section 1 EARLY CLASSIFICATION OF MULTIVARIATE TIME SERIES BY SHAPELET

Ghalwash, Mohamed F., and Zoran Obradovic. "Early classification of multivariate temporal observations by extraction of interpretable shapelets." *BMC bioinformatics* 13.1 (2012): 195.

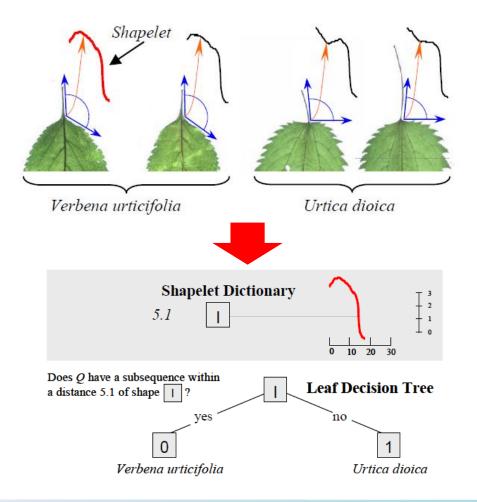
Time series data mining



Shapelet

Shapelet

- Subsequences which are maximally representative of a class
- Motif of sequences



Research

- Shapelet concept had been studied only in univariate study
- In this study,
 - Extend the concept of shapelet to multivariate case
 - Information-gain based distance threshold
 - Weighted information-gain based utility score of a shapelet

Univariate Shapelet

Formal definition

– T: Sequence data

- S_p^l : subsequence that has starting point p, length l

- S_T^l : subsequences set. $S_T^l = \{S_p^l \text{ of } T, \text{ for } 1 \le p \le m l + 1\}$
- Subsequence distance (Subdist(T,S))
 - Subdist(T, S) = min(Dist(S, S')), where $S' \in S_T^{|S|}$
 - Minimum distance between S and subsequences of T which has length |S|
- Entropy I(**D**)
 - $I(\mathbf{D}) = -p(A)\log(p(A)) p(B)\log(p(B))$
- Information Gain
 - Entropy difference when D is split into D_1 , D_2 by split strategy sp
 - $Gain(sp) = I(D) (f(D_1)I(D_1) + f(D_2)I(D_2))$

Univariate Shapelet

Formal definition

- Shapelet is a kind of motif
 - Subsequence distance plays a important role in similarity measure
 - How to set a starting point and length?
- How to classify Time series data
 - Data set D는 class가 A와 B인 data point들로 구성됨
 - Classification Rule : $class = \begin{cases} D_1, subsequenceDist(T_{1,i}, S) < d_{th} \\ D_2, subsequenceDist(T_{1,i}, S) \ge d_{th} \end{cases}$
 - 분류된 class와 실제 class가 비슷한 distance threshold d_{th} 를 찾아야
- Optimal split point (*OSP*(**D**, *S*))
 - Time series data set **D**가 class **A**, **B**들로 이루어져 있다고 하자
 - A Shapelet candidate S에 대해서, 가장 분류를 잘하는 distance threshold
 - $Gain(S, d_{OSP(D,S)}) \ge Gain(S, d'_{th})$, for any other distance threshold d'_{th}
- Shapelet (Shapelet(D))
 - 모든 candidate subsequence들과, 해당 OSP들 중, 가장 분류를 잘하는 subsequence
 - $Gain(Shapelet(D), d_{OSP(D,Shapelet(D))}) \ge Gain(S, d'_{th})$

Multivariate Shapelet

Formal definition

- $T = [T^1, T^2, ..., T^N]$: N-dimensional sequence data
- s^{j} : Subsequence j^{th} dimension factor
- Subsequence distance (Subdist(S,T))
 - $Subdist(s,T) = [dist(s^1,T^1), dist(s^2,T^2), ..., dist(S^N,T^N)]$
 - Minimum distance between S and subsequences of T which has length $|s^i|$

Multivariate Shapelet

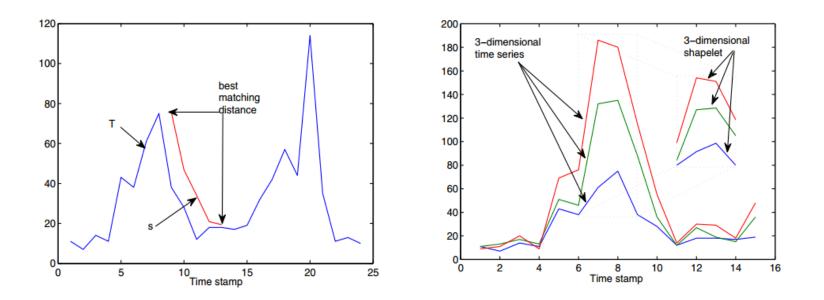
Formal definition

- Shapelet is a kind of motif
 - Subsequence distance plays a important role in similarity measure
- How to classify Time series data
 - Data set **D**는 class가 A와 B인 data point들로 구성됨

• Classification Rule :
$$class = \begin{cases} \boldsymbol{D}_1, subsequenceDist(T_{1,i}, S) <_{perc} \boldsymbol{d}_{th} \\ \boldsymbol{D}_2, subsequenceDist(T_{1,i}, S) \geq_{perc} \boldsymbol{d}_{th} \end{cases}$$

•
$$d_1 <_{perc} d_2: d_1^{q_j} < d_2^{q_j}, \forall j = 1 \dots perc \times N, perc \in [0,1]$$

- 분류된 class와 실제 class가 비슷한 distance threshold d_{th} 를 찾아야
- Optimal split point (*OSP*(**D**, *S*))
 - Time series data set **D**가 class **A**, **B**들로 이루어져 있다고 하자
 - A Shapelet candidate S에 대해서, 가장 분류를 잘하는 distance threshold
 - $Gain(S, d_{OSP(D,S)}) \ge Gain(S, d'_{th})$, for any other distance threshold d'_{th}
- Shapelet (Shapelet(D))
 - 모든 candidate subsequence들과, 해당 OSP들 중, 가장 분류를 잘하는 subsequence
 - $Gain(Shapelet(D), d_{OSP(D,Shapelet(D))}) \ge Gain(S, d'_{th})$
 - 여기서, 각 변수의 starting point는 같은 지점으로 함



(Left): Univariate case, (Right): Multivariate case

Shapelet - BruteForce Algorithm

Gene	rateCandidates (dataset D , <i>MAXLEN</i> , <i>MINLEN</i>)
1	$pool \leftarrow \emptyset$
2	$\hat{l} \leftarrow MAXLEN$
3	While $l \ge MINLEN$
4	For T in D
5	$pool \leftarrow pool \cup \mathbf{S}_T^l$
6	EndFor
7	/ ← / - 1
8	EndWhile
9	Return pool

- Generate Candidate
 - 모든 shapelet 후보 생성

Chec	CheckCandidate (dataset D , shapelet candidate <i>S</i>)					
1	$objects_histogram \leftarrow Ø$					
2	For each T in D					
3	$dist \leftarrow SubsequenceDist(T, S)$					
4	insert T into objects_histogram by the key dist					
5	EndFor					
6	Return CalculateInformationGain(<i>objects histogram</i>)					

- Check Candidate
 - 후보 shapelet과의 dist계산
 - 이 dist들로 histogram 생성

Shapelet - BruteForce Algorithm

Calcu	lateInformationGain (distance histogram <i>obj_hist</i>)
1	$split_dist \leftarrow OptimalSplitPoint(obj_hist)$
2	$\mathbf{D}_1 \leftarrow \emptyset, \mathbf{D}_2 \leftarrow \emptyset$
34	For d in obj_hist
4	$\mathbf{If} d.dist < split_dist$
5	$\mathbf{D}_1 \leftarrow \mathbf{D}_1 \cup d.objects$
6	Else
7	$\mathbf{D}_2 \leftarrow \mathbf{D}_2 \cup d.objects$
8	EndIf
9	EndFor
10	Return $I(\mathbf{D}) - \hat{I}(\mathbf{D})$

CalculateInformationGain

- Split distribution set 생성
- 각 split마다 분류
- 각각 Information Gain 산출

Findi	ngShapeletBF (dataset D , <i>MAXLEN</i> , <i>MINLEN</i>)
1	candidates GenerateCandidates(D, MAXLEN, MINLEN)
2	$bsf_gain \leftarrow 0$
3	For each S in candidates
4	$gain \leftarrow CheckCandidate(\mathbf{D}, S)$
5	If gain > bsf_gain
6	bsf_gain 🗲 gain
7	$bsf_shapelet \leftarrow S$
8	EndIf
9	EndFor
10	Return bsf_shapelet

FindingShapeletBF

- 후보 shapelet 생성
- 매 후보마다 IG 계산
- IG, Shapelet 업데이트

Classification

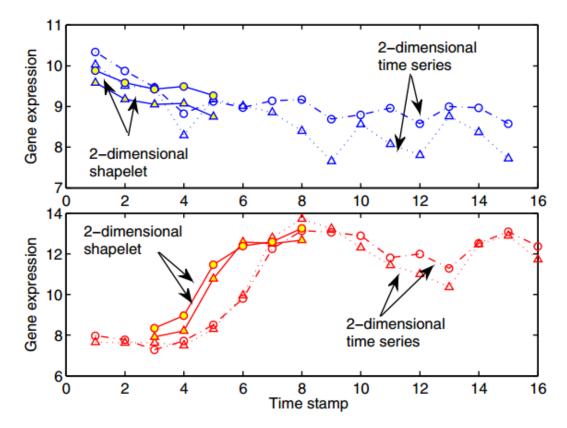
- Score the shapelet candidates w.r.t. weighted information gain
 Consider both early classification and accuracy
- If highest score can cover the current test time series
 - Classified as the class of the shapelet
 - Else, next highest score and repeats the process again
- (Maybe, it's not a good classification method)

- 3 data sets
 - Blood gene expression dataset from human viral studies with influenza A (H3N2)
 - 17 subjects: 9 symptomatic, 8 asymptomatic
 - Blood samples taken from 16 time points
 - Used 23 unique genes from Zaas et al.(2009)
 - HRV dataset to distinguish acute respiratory infections
 - 20 subjects: 10 symptomatic, 10 asymptomatic
 - Blood samples taken from 14 time points
 - Used 26 unique genes from Zaas et al.(2009)
 - **Drug Response datasets** for drug therapy with IFN β from Baranzini et al.(2005)
 - 52 patients: 33 good responders, 19 bad responders to the drug
 - Every 3 months in the first year, and every 6 months in the second year
 - Generated data (Baranzini 3A, 3B, 6, 12)
 - 9 genes that was founded from discriminative HMM study (Lin et al.(2008))
 - 17 relevant genes from mixture of HMM study (Costa et al.(2009))

- Settings
 - Length : 3~60% of time series length
 - Bootstrapping for generalization error estimation
 - Sample with replacement from original dataset(75%)
 - Test with the others
 - Report the median of the accuracy
 - Report components
 - Accuracy
 - Coverage (percentage of the time series covered by the method)
 - Earliness (fraction of the time series length used for classification)

•
$$F_1 = 2 \frac{Acc(1-Ear)}{(1-Ear)+Acc}$$
, $0 < F_1 < 1$

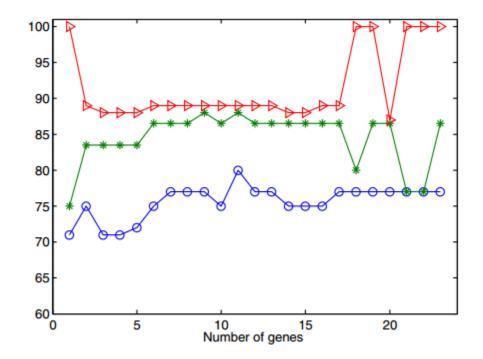
- Results
 - Effectiveness of the MSD method on a case from H3N2 dataset
 - Used first half of the earliest time stamp
 - (Top): 2-D H3N2 asymptomatic test subject
 - (Bottom): 2-D H3N2 symptomatic test subject
 - Both used RSAD2 and IFI44L genes in each time step



- Results
 - Performance of the MSD method on each dataset
 - Relatively good performance with a small fraction of the time series

Dataset	Number of genes	Accuracy	Relative accuracy	Coverage	Earliness	<i>F</i> ₁
H3N2	23	77.78	85.71	100	62.50	0.5060
HRV	26	70.00	71.43	100	40.00	0.6462
Baranzini3A	3	70.00	73.91	95.83	46.26	0.6080
Baranzini3B	3	66.67	68.00	100	44.81	0.6039
Baranzini6	6	70.83	70.83	100	42.86	0.6325
Baranzini12	12	66.67	66.67	100	42.86	0.6154
Lin9	9	67.86	69.57	100	44.00	0.6136
Costa17	17	68.00	69.23	100	45.24	0.6067

- Results
 - Performance of MSD on H3N2 dataset using top genes
 - Using some of the top genes rather than whole genes to get better performance
 - Top genes are studied by Zaas et al(2009)



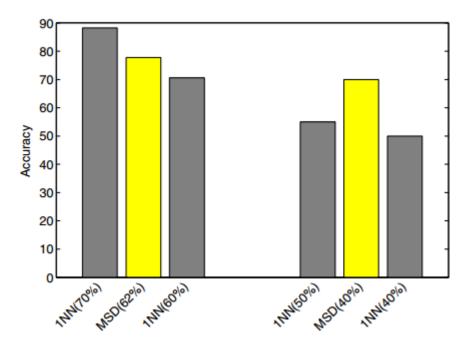
(Red): Coverage, (Green): Relative Accuracy, (Blue): Accuracy

- Results
 - Comparing the MSD method with the univariate method
 - Without H3N2, MSD outperformed the univariate method
 - (Top): MSD method
 - (Bottom): Univariate method

Dataset	genes	Accuracy	Relative accuracy	Coverage	Earliness	<i>F</i> ₁
H3N2	Top 11 genes	80.00	87.50	88.89	64.29	0.4938
HRV	RSAD2	71.43	75.00	100	38.89	0.6587
Baranzini3A	Caspase 10	75.00	76.00	100	45.45	0.6316
Baranzini3B	Caspase 2 , Caspase 3	75.00	76.19	100	44.05	0.6409
Baranzini6	Caspase 10 , IL-4Ra	75.00	76.00	100	43.45	0.6448
Lin9	Caspase 2, Caspase 3, Jak2	81.82	82.61	100	43.43	0.6689

Dataset	gene	Accuracy	Relative accuracy	Coverage	Earliness	<i>F</i> ₁
H3N2	LOC26010	77.78	85.71	100	38.34	0.6879
HRV	RSAD2	42.86	80.00	55.56	52.50	0.4506
Baranzini3A	Caspase 10	12.00	100.00	12.25	42.86	0.1983
Baranzini3B	Caspase 3	26.09	80.00	31.38	40.26	0.3632
Baranzini6	Caspase 10	12.00	100.00	12.25	42.86	0.1983
Baranzini12	Caspase 3	26.09	80.00	31.38	40.26	0.3632
Lin9	Caspase 3	26.09	80.00	31.38	40.26	0.3632
Costa17	Caspase 3	26.09	80.00	31.38	40.26	0.3632

- Results
 - Comparing to conventional method
 - Comparing 1NN method with DTW which is exceptionally difficult to beat
 - To consider the earliness, used shorter time series
 - For the early classification task, MSD can be better than 1NN-DTW



Conclusion

- Shapelet method in multivariate time series is done
 With simple concept
- This method is useful in early detection task
- Too much computation cost
 - Bruteforce approach: $O(k^2 \overline{m}^3)$, k: number of subsequence, \overline{m} : *average length*
 - Only can be applied in short time series
 - Need more efficient algorithm

To dos

- Only for independence among attributes
- Too much computational cost for original task
- Difference in time series length
- How can DTW replace the Euclidean distance?
- Focusing on small data set with classification task

References

- Baranzini, Sergio E., et al. "Transcription-based prediction of response to IFNβ using supervised computational methods." (2004): e2.
- Costa, Ivan G., et al. "Constrained mixture estimation for analysis and robust classification of clinical time series." *Bioinformatics* 25.12 (2009): i6-i14.
- Ghalwash, Mohamed F., and Zoran Obradovic. "Early classification of multivariate temporal observations by extraction of interpretable shapelets." *BMC bioinformatics* 13.1 (2012): 195.
- Lin, Tien-ho, Naftali Kaminski, and Ziv Bar-Joseph. "Alignment and classification of time series gene expression in clinical studies." *Bioinformatics*24.13 (2008): i147-i155.
- Ye, Lexiang, and Eamonn Keogh. "Time series shapelets: a novel technique that allows accurate, interpretable and fast classification." *Data mining and knowledge discovery* 22.1-2 (2011): 149-182.
- Zaas, Aimee K., et al. "Gene expression signatures diagnose influenza and other symptomatic respiratory viral infections in humans." *Cell host & microbe*6.3 (2009): 207-217.