# Mining Marketing Meaning from Online Chatter: Strategic Brand Analysis of Big Data using Latent Dirichlet Allocation

Tirunillai, Seshadri, and Gerard J. Tellis. Journal of Marketing Research 51.4 (2014): 463-479.

서울대학교 산업공학과 양호성, 조성준 hoseong@dm.snu.ac.kr, zoon@snu.ac.kr



- 1. Introduction
- 2. Method
- 3. Validation
- 4. Results
- 5. Brand mapping
- 6. Summary, implications, limitation

Extract dimensions of quality, valence, validity, importance, optimality, heterogeneity and dynamics of those dimensions Using LDA

| Term                                 | definition                                                                                                                                                                                                                                      |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UGC                                  | User-generated content<br>(Social media, product review, blog)                                                                                                                                                                                  |
| Valence                              | Expression of positive vs negative performance on a dimension or attribute and is termed " <u>sentiment</u> " in text-mining research.                                                                                                          |
| Dimensions of quality                | Latent dimensions, variables that consumers may not explicitly mention but<br>capture or represent a large number of attributes<br>(e.g. "Performance" dimension – attributes (the speed, power, or multitasking<br>capabilities of a computer) |
| Vertically differentiated dimensions | characteristics on which all consumers agree that more is better (e.g., reliability)                                                                                                                                                            |
| Horizontally differentiated          | taste dimensions on which consumers might disagree<br>(e.g., aesthetics)                                                                                                                                                                        |

#### Introduction

The quality of a product or service is an important determinant of consumer satisfaction, brand performance

With advances in online media and technologies, customers share opinions about products



#### Quality dimensions

Quality is a multi-dimensional construct.

User generated content provides a rich source of data to extract the dimensions of quality

- Traditional : obtain the latent dimensions of quality through consumer survey
- Latent dimensions are variables that consumers may not explicitly mention but represent a large number of attributes
- Examples of Mobile Phone

| Latent Dimensions | Attributes             |
|-------------------|------------------------|
| Performance       | Speed                  |
| Portability       | Smooth, Handy          |
| Compatibility     | Universial, accessible |

### Introduction

This study suggests a unified framework

UGC provides a rich source of data to extract the dimensions of quality



#### The benefits of LDA & Advantages

The benefits of LDA

- Benefits of LDA
  - 1) It allows for exploration of dynamics over time
  - 2) It allows for computation of the importance of the extracted dimensions
  - 3) We can use the results of LDA for further analysis to offer rich managerial insights
    - dimensions' importance over time
    - Heterogeneity
    - perceptual maps of competing brands & dynamics of these maps
- Advantages relative to previous methods
  - 1) Using <u>unsupervised methods</u> that involve little human intervention
  - 2) extracts <u>valence</u> without requiring client or rater inputs. -> minimal bias or errors



- 1) 350,000 customer reviews
- 2) five markets, 17 Brands

| Markets            | Brands                                                   |  |
|--------------------|----------------------------------------------------------|--|
| personal computing | Hewlett-Packard [HP], Dell                               |  |
| cellular phones    | Motorola, Nokia, Research in Motion Limited [RIM], Palm  |  |
| footwear           | Skechers USA, Timberland Company, Nike                   |  |
| toys               | Mattel, Hasbro, LeapFrog                                 |  |
| data storage       | Seagate Technology, Western Digital Corporation, SanDisk |  |



- 1) Eliminate non-English characters and words (HTML tags, URLs, numbers, punctuation..)
- 2) Break into sentences
- 3) Part of Speech tagging to retain only adjectives, nouns, adverbs
- 4) Replace common negatives of words (e.g. "hardly", "no" -> "not")
- 5) Stemming ("likable, liked, liking" -> like)
- 6) Remove stopping words ("when, the, and, is")
- 7) Remove all the words that do not appear in at least 2%



- The problems of extracting dimensions of quality from reviews in traditional methods (e.g. PCA)
  - 1) Customers use their <u>own words to describe the quality of the attributes -> curse of dimension</u>
  - Customers express opinions on only those dimensions that are salient to <u>their experience</u> -> sparse representation
  - 3) Valence and adjectives are *context specific*. ("small" in laptop, memory)



- So, We introduced probabilistic topic model LDA
- In LDA, topics = dimensions of product quality expressed by consumers



 Consumers express one or more dimensions of quality that they believe are worthy

2) Words that describe a dimension will co-occur

across the reviews



| LDA model                                                                                                                | Human                                                 |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| (prior on distribution) uncovers the distribution of the latent dimensions                                               | Choose theme                                          |
| Draws of the words as a multinomial choice                                                                               | Choosing the words                                    |
| Compute the conditional distribution of the latent variables (dimensions) given the observed variables (words in review) | Given words in review, infer<br>dimensions of quality |



- v: vectors of all valence
- $\Phi$ : multinomial distribution of dimension
- $\pi$ : proportion of valence in the review
- $\theta$ : dimension's importance
- $\alpha$ : hyperparameters on  $\theta$
- eta : hyperparameters on  $\Phi$
- $\gamma$ : hyperparameters on  $\pi$





 $\theta$ : dimension's importance



$$P\left(\mathbf{z}, \boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{\pi}, \mathbf{v} | \mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}\right) = \frac{p(z, w, \boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{\pi}, v, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})}{p(w | \boldsymbol{\phi}, \boldsymbol{\theta}, \boldsymbol{\pi}, \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma})}.$$

joint probability distribution of all the variables

marginal probability distribution
 (the probability of observing the review corpus given any parameters of the latent model)

- Infer the distribution of the latent dimensions in a review(θ)
  & distribution of the words in a dimension(Φ)
- Directly estimating  $\Phi$ ,  $\theta$  can be unreliable





- 1) Use an initial set of seed words unambiguously positive or negative (good, great), (bad, horrible)
- Probability of the valence of the newly encountered words -> probability of their co-occurrence with the initial seed word
- 2) newly classified words -> appended to the list of the seed words -> next iteration
- 3) repeated until the entire vocabulary of words in the reviews is classified on the basis of the valence



- Marginal log-likelihood with 5 fold crossvalidation
- Harmonic mean estimator
- First extracting two dimensions and then increase the number of dimensions until the log-likelihood reaches a *maximum*





- 1) Select words that better distinguish the reviews associated with that dimension
- 2) Assign a label to the given dimension
  - Mutual information reduction in the amount of *uncertainty* associated with a dimension due to a given word (MI ↑ -> greater contribution)
  - MI is measured by *entropy*

$$\mathbf{E}(\mathbf{k}) = -\sum_{\ell=0}^{1} \mathbf{P}(\boldsymbol{\eta} = \ell) \log_2 \mathbf{P}(\boldsymbol{\eta} = \ell).$$

P : 무작위로 선택한 review 가 topic k 에 의해 생성되었을 확률  $\eta$  : review discusses the k-th dimension

MI(k|w) = E(k) - E(k|w) ≥ 0 ∀(k,w). E(k) : entropy of given dimension (모든 reviews 가 하나의 dimension에서 생성되면 최소값)

#### Result – Extracted dimensions of quality

Table 1 lists the words with highest MI score relating to each dimension. These words help label dimension.

# Table 1DIMENSIONS OF QUALITY FOR MOTOROLA (MOBILE PHONES, QUARTER 4, 2008)

| Instability<br>(Negative) | Portability<br>(Positive) | Receptivity <sup>a</sup><br>(Positive) | Compatibility<br>(Positive) | Discomfort <sup>b</sup><br>(Negative) | Secondary Features<br>(Positive) |
|---------------------------|---------------------------|----------------------------------------|-----------------------------|---------------------------------------|----------------------------------|
| Unstable                  | Smooth                    | Dependable                             | Universal                   | Cramp                                 | Feature                          |
| Error                     | Handy                     | Reception                              | Expandable                  | Big                                   | Арр                              |
| Crash                     | Portable                  | Sharp                                  | Supported                   | Layout                                | Card                             |
| Freeze                    | Small                     | Quick                                  | Compatible                  | Finger                                | Camera                           |
| Reboot                    | Compact                   | Crisp                                  | Accessible                  | Heavy                                 | Wi-Fi                            |

<sup>a</sup>Refers to mobile phone signal.

<sup>b</sup>Refers to discomfort regarding the mobile phone's physical layout. Notes: The table shows the words with the top MI scores.

- Limitations : for some dimensions, labeling may not convey the words' meaning in its entirety
- delete dimensions about the retailer



2 Human Raters

Randomly selected 100 reviews -> read -> select set of dimensions and associated valence Fleiss' kappa coefficient 이용 human 과 model 의 agreement 계산

Consumer Reports

Consumer reports : magazine that evaluate brands deemed important by expert testers of the products

Assess the overlap of the dimensions extracted from the automated analysis with that of the dimensions used for rating the brands in the markets

# Validation Face validity w

#### Face validity with human raters

Fleiss' kappa  $\kappa$ : measures the interrater agreement

Average  $\kappa = 0.59$ 

| Market-specific | K   |
|-----------------|-----|
| Mobile Phones   | 60% |
| Computers       | 62% |
| data storage    | 57% |
| Toys            | 53% |
| footwear        | 61% |

$$\kappa = \frac{\overline{P} - \overline{P_e}}{1 - P_e}$$
$$\overline{P_e} = \sum_{k=1}^{K} p_k^2$$

 $p_k$ : proportion of reviews that the raters assigned to a given dimension

| Kappa Statistic | Strength of Agreement   |  |
|-----------------|-------------------------|--|
| < 0.00          | Poor                    |  |
| 0.00 - 0.20     | $\operatorname{Slight}$ |  |
| 0.21 - 0.40     | Fair                    |  |
| 0.41 - 0.60     | Moderate                |  |
| 0.61 - 0.80     | Substantial             |  |
| 0.81 - 1.00     | Almost Perfect          |  |

Landis, J. Richard, and Gary G. Koch. "The measurement of observer agreement for categorical data." *biometrics* (1977): 159-174.

#### Validation



External validity with Consumer Reports

Use Jaccard coefficient to test the degree of overlap between the dimensions evaluated in *Consumer Reports* and *automated analysis* 

#### Jaccard coefficient

 $JC = \frac{|N(Dim_{1da} \cap Dim_{CR})|}{|N(Dim_{1da} \cup Dim_{CR})|}.$ 

| Markets       | Average JC |
|---------------|------------|
| Mobile Phones | 0.65       |
| Computers     | 0.72       |
| data storage  | 0.81       |

#### Table 3 COMPARISON OF *CONSUMER REPORTS* AND AUTOMATED ANALYSIS

A: Mobile Phones, 2009

| Dimension                                       | Automated<br>Method | Consumer<br>Reports |
|-------------------------------------------------|---------------------|---------------------|
| Ease of use (e.g., voice commands, navigation)  | √                   | √                   |
| Performance (e.g., voice clarity, sensitivity)  | $\checkmark$        | $\checkmark$        |
| Messaging                                       | $\checkmark$        | Х                   |
| Exhaustibility (battery)                        | $\checkmark$        | Х                   |
| Layout discomfort                               | $\checkmark$        | Х                   |
| Secondary features (e.g., camera, music player) | $\checkmark$        | $\checkmark$        |
| Compatibility (e.g., Bluetooth, headphones)     | $\checkmark$        | $\checkmark$        |

## Heterogeneity of dimensions

Introduce Herfindahl index which is a measure of the size of firms in relation to the industry and an indicator of the amount of competition among them

Herfindahl index  $\uparrow$  -> generally competition  $\downarrow$ 

Herfindahl index  $H = \sum_{i=1}^{n} \alpha^{2}$ .  $\alpha = \frac{\text{Total number of reviews citing the dimension}}{\text{Total number of reviews of the brand}}$ .

-> inverse measure of the diversity or heterogeneity of the dimensions by reviewers 즉, H 값이 크면 diversity 가 적다. 특정 dimension 에 집중되어 있다.

Vertically differentiated markets

H relatively high

Horizontally differentiated markets

H relatively low

Mobile phone, computers have objective dimensions

little heterogeneity across dimensions

|                 | Herfindahl<br>Index of | Heterogeneity | Instability of<br>Herfindahl Index |
|-----------------|------------------------|---------------|------------------------------------|
| Market, Brand   | Concentration          | in Dimensions | over Time (%)                      |
| Mobile Phones   |                        |               |                                    |
| Nokia           | 45.78                  | Low           | 3.3                                |
| RIM             | 54.12                  | Low           | 3.5                                |
| Palm            | 43.58                  | Low           | 2.3                                |
| Motorola        | 48.18                  | Low           | 2.1                                |
| Computers       |                        |               |                                    |
| Dell            | 24.80                  | Low           | 1.4                                |
| HP              | 31.68                  | Low           | 2.7                                |
| Toys            |                        |               |                                    |
| Hasbro          | 12.82                  | Moderate      | 4.9                                |
| Mattel          | 11.64                  | High          | 5.4                                |
| LeapFrog        | 13.58                  | High          | 7.6                                |
| Footwear        |                        |               |                                    |
| Timberland      | 25.74                  | Moderate      | 5.1                                |
| Skechers        | 21.52                  | Moderate      | 7.4                                |
| Nike            | 23.82                  | Moderate      | 8.9                                |
| Data Storage    |                        |               |                                    |
| Seagate         | 52.44                  | Moderate      | 4.8                                |
| Western Digital | 44.86                  | Low           | 3.6                                |
| Sandisk         | 61.02                  | Low           | 3.8                                |



#### Stability of Heterogeneity of Dimensions over Time

Calculate the percentage instability ini Herfindahl index of the dimension over time In Table 5, do not suggest a significant change in the dimension over the time

$$V_{t} = \Delta H_{t} + 2 \left[ H_{t-1} - \rho \sigma_{t} \sigma_{t-1} - \frac{1}{n} \right],$$

 $H_t$ : Herfindahl index at time t (week)

ho : correlation between % share of consumers citing the dimension

 $\sigma_t$ : standard deviation of shares of dimensions at t

n: total number of dimensions at t

| Vertically differentiated markets   | 1~4 %, stable over<br>time |
|-------------------------------------|----------------------------|
| Horizontally differentiated markets | 4~8 %, unstable            |

#### Table 5 SPLIT-SAMPLE TEST FOR ROBUSTNESS OF THE STABILITY OF THE DIMENSIONS

| Market, Brand   | Instability of Herfindahl<br>Index over Time (%)<br>Sample 2005–2007 | Instability of Herfindahl<br>Index over Time (%)<br>Sample 2008–2009 |
|-----------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
| Mobile Phones   |                                                                      |                                                                      |
| Nokia           | 3.1                                                                  | 3.5                                                                  |
| RIM             | 3.4                                                                  | 3.7                                                                  |
| Palm            | 2.4                                                                  | 2.6                                                                  |
| Motorola        | 1.8                                                                  | 2.4                                                                  |
| Computers       |                                                                      |                                                                      |
| Dell            | 1.5                                                                  | 1.8                                                                  |
| HP              | 2.8                                                                  | 2.5                                                                  |
| Toys            |                                                                      |                                                                      |
| Hasbro          | 5.1                                                                  | 4.7                                                                  |
| Mattel          | 5.2                                                                  | 5.4                                                                  |
| LeapFrog        | 7.8                                                                  | 7.5                                                                  |
| Footwear        |                                                                      |                                                                      |
| Timberland      | 5.3                                                                  | 5.0                                                                  |
| Skechers        | 7.6                                                                  | 7.3                                                                  |
| Nike            | 8.6                                                                  | 8.5                                                                  |
| Data Storage    |                                                                      |                                                                      |
| Seagate         | 4.6                                                                  | 5.1                                                                  |
| Western Digital | 3.8                                                                  | 3.2                                                                  |
| Sandisk         | 3.6                                                                  | 3.9                                                                  |

# 5

### Brand Mapping

Positioning of competing brands in a market on the basis of their location in space defined b the key dimensions

• Distance measure : Hellinger distance

$$f(\theta_k^a, \theta_k^b) = \left[\frac{1}{2} \int \left(\sqrt{\frac{dA}{dx}} - \sqrt{\frac{dB}{dx}}\right)^2 dx\right]^{\frac{1}{2}}.$$
 (continuous)

$$f\left(\theta_{k}^{a}, \theta_{k}^{b}\right) = \left[\frac{1}{2}\sum_{k} \left(\sqrt{\theta_{k}^{a}} - \sqrt{\theta_{k}^{b}}\right)^{2}\right]^{\frac{1}{2}}.$$
 (discrete)

Derive *similarity matrix* using Helliger distance



|   |         | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |  |
|---|---------|------|------|------|------|------|------|------|------|------|--|
|   |         | BOST | NY   | DC   | MIAM | CHIC | SEAT | SF   | LA   | DENV |  |
|   |         |      |      |      |      |      |      |      |      |      |  |
| 1 | BOSTON  | 0    | 206  | 429  | 1504 | 963  | 2976 | 3095 | 2979 | 1949 |  |
| 2 | NY      | 206  | Û    | 233  | 1308 | 802  | 2815 | 2934 | 2786 | 1771 |  |
| 3 | DC      | 429  | 233  | 0    | 1075 | 671  | 2684 | 2799 | 2631 | 1616 |  |
| 4 | MIAMI   | 1504 | 1308 | 1075 | 0    | 1329 | 3273 | 3053 | 2687 | 2037 |  |
| 5 | CHICAGO | 963  | 802  | 671  | 1329 | 0    | 2013 | 2142 | 2054 | 996  |  |
| 6 | SEATTLE | 2976 | 2815 | 2684 | 3273 | 2013 | 0    | 808  | 1131 | 1307 |  |
| 7 | SF      | 3095 | 2934 | 2799 | 3053 | 2142 | 808  | 0    | 379  | 1235 |  |
| 8 | LA      | 2979 | 2786 | 2631 | 2687 | 2054 | 1131 | 379  | 0    | 1059 |  |
| 9 | DENVER  | 1949 | 1771 | 1616 | 2037 | 996  | 1307 | 1235 | 1059 | D    |  |

Visualize using Multidimensional scaling(MDS)



## Static Brand Mapping

Choose top 2 dimensions on the basis of the frequency of occurrence of these dimensions across all the reviews



Performance : Motorola > Palm

Performance & Ease of use : HP > Dell

Durability & Safety : Mattel > LeapFrog

# 5

### Within Brand Segmentation

Segment consumers on the basis of the proportion of words they allocate to the various dimensions of quality in their review

Size : volume of reviews citing these dimensions

![](_page_25_Figure_4.jpeg)

#### Dynamic brand mapping

Dell's position on the ease of use is more unstable and changes rapidly over the time period.

![](_page_26_Figure_2.jpeg)

### Dynamics of Dimensions

For the dimensions of quality that vary over time, we can obtain more insights. In this case, trajectory seems to be related to the entry and exit of other brands

#### VARIATION IN THE EASE OF USE DIMENSION FOR THE MOBILE PHONE MARKET (BLACKBERRY)

A: Probability Mass Associated with the Ease of Use Dimension

![](_page_27_Figure_4.jpeg)

• Implications

1) It enables managers to ascertain the valence, labels, validity, importance, dynamics, and heterogeneity of latent dimensions of quality

- 2) It enables managers to observe how brands compete on multidimensional space.
- 3) It enables managers to track how this competition varies over time in great detail. (weekly level)

- Limitations and Future Research
  - 1) Computationally intensive
  - 2) This study focus only on product reviews
  - 3) LDA model is sensitive to hyperparameter of the Bayesian priors
  - 4) We neither include marketing mix variables nor study their impact on the brands or dimensions
  - 5) We do not analyze rare or infrequent words

#### Brand2Vec

- 각 브랜드를 단 하나의 '차원'으로만 생각한 것의 한계
- 기존의 Brand2Vec 방법에 Sentiment, Dimensions of Quality 등의 정보를 추가적으로 extract 할 수 있는 방법 에 대한 고민
- 이 연구에서 사용한 Herfindahl index, Mutual Information, Helliger distance 등의 적용
- 시간에 따른 변화