Interpretable Distributed Representation of Documents through Explicitly Explanatory Features:

<Experiment Result>

November 25th, 2015 SNU Data Mining Center Han Kyul Kim

1. Train Word2Vec from the collection of documents

vayermua croatia crespo brown milan iesus commended befaintilly western daughter mahatma screwed tunisetine pieced acr liverpool pitation. graham **Mary** langenergionan eraser lugs ackedball fe colfaarkeissues queen letter unimiddletown theologianhallertautaly lithu egeorgeni lithuania dia SIRPART gianfranco mether immoration wayside garysouth lesiey lesiey wednesdays peru czechoslovakian artigutay russiaer penitence serbia 9#ducators nietzsche germ**ann**gary Silegiair publications mo heinrich eindh Wanneson published cagliari denmark cryoaltabia brat SU tco belgiunbudapest dinaric rica WA henry luxembourg philosophermnr bay adoptionism francial k isbn ouran charles incorpore aleoplatenic waltz randell uk weidman Istralia tillman jacksonville Wethings moscow bertinikingwalas biotite quereaskand language gillies lazimugabe hawking art porthan ichard reining paul vinci carter munich futsal leonardo williamonoasaas schneider ronaldo ma paris kickboxing apse matthias michae llewelyn shakespeare basilides anderson growths wife holliday letters ajax andrew nichols weymouth achromatic dicksirhan washington boyars tom israeli town library york test: city colleges diego turbocharder taotilats studengszüügestan kramerdsheley albertosauruseanu porto college feeders ucla mellon bremen eWAkersity Panelethnot macedonians aggrieved miturbana seattle fiorentia formalumbia carnegie chicaispelled macoupleyappredelphia detroit nationality pompous purdue harvard yale rutgers bacteriophage manshaakem virginia

Raters

1

Proposed Method

2. Cluster word2vec generated vectors to create clusters of concepts

3. Represent the documents by counting the number of times that their words belong to these different concept clusters (Similar to BOW approach!)

Concept Cluster 1 = {Arsenal, Arsenal's, Aston Villa, Swansea City, Gunners...} **Concept Cluster 2** = {Squad, Players...}

[Document 1]:

Arsenal's annual injury problem is underway. Their thin squad will be put to the test by a Swansea City team looking to build on a vital win at Aston Villa.

[Document 2]:

Arsenal have a whole host of injury problems to contend with. The Gunners currently sit top of the Premier League's infamous injury table. Eight senior players will be unable to take part at the Liberty Stadium

Features	Concept Cluster 1	Concept Cluster 2	
Document 1	3	1	
Document 2	2	1	

4. Test the effectiveness of the document representation through document clustering and classification

Xing, Chao, et al. "Document classification with distributions of word vectors." Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA). IEEE, 2014.

• Simple average pooling approach:

$$v_i = \frac{1}{J_i} \sum_{j=1}^{J_i} c_{i,j}$$

- Derives a document vector as the centroid of word vectors within the document
- Bias towards words without significant contribution to representing the semantics of the documents

Doc2Vec

Le, Q. V., & Mikolov, T. (2014). Distributed representations of sentences and documents

- Extension of Word2Vec: a document is considered as an extra word
- Document (paragraph) id represents one-hot encoded vector of <u>documents</u>
- As a result, documents are also embedded into continuous vector space

Dataset: <Reuters>

Total Number of Documents: 203,923 (2006. 09. 01 ~ 2015. 06. 06)

- Divided into 8 different categories
- Total number of sentences: 3,076,016
- Total number of tokens: 89,146,031
- Total number of unique tokens: 65,159

Categories	Number of Documents
<u>Entertainment</u>	25,500
<u>Sports</u>	25,500
<u>Technology</u>	25,500
Market	25,423
<u>Politics</u>	25,500
<u>Business</u>	25,500
World	25,500
<u>Health</u>	25,500

Experiment Setting

F1 Score – Document Clustering

Dimension

F1 Score – Document Clustering

Dimension	Doc2vec	Word2vec Averaging	Word2vec Clustering (best)	Word2vec Clustering (average)
100	0.4759801	0.5080175	0.505036383	0.358902869
200	0.4866283	0.4119441	0.489006684	0.362013807
300	0.4680473	0.4826981	0.523417232	0.382304123
400	0.4746061	0.5083417	0.485580917	0.352056779
500	0.4718293	0.4711248	0.572365785	0.396641247
600	0.468465	0.4791967	0.466831366	0.363745187
700	0.4692426	0.4603129	0.468562776	0.372937356
800	0.4664247	0.4015193	0.481906004	0.369164546
900	0.4765871	0.4784783	0.478379763	0.390731813
1000	0.4698723	0.4494728	0.542261416	0.374829576
2000	0.4733753	0.4877426	0.502956721	0.379956078
3000	0.4636311	0.4377777	0.482590878	0.364973752

Concept Cluster Documents

Features	X[0]	 X[33]	 X[108]	X[109]
Document 1	5	 1	 0	0
Document 2	27	 36	 1	0

[Document 1]

US | Mon Apr 2, 2007 11:00pm EDT

Giambi powers Yankees to emotional opening day win NEW YORK 000000

Opening day ceremonies at Yankee Stadium in New York, April 2, 2007.

@ 1 of 4 @

Jason Giambi drove in three runs to help the New York Yankees rally past the Tampa Bay Devils Rays for a 9-5 Opening Day victory at Yankee Stadium on Monday.

Tied at 5-5 in the seventh inning, the Yankees's designated hitter connected for an RBI single to right field to score Alex Rodriguez as New York moved ahead for good.

Rodriguez then put the game away with a two-run homer in the eighth inning after Bobby Abreu had singled in Doug Mientkiewicz.

Related: U.S., SPORTS

Surface of Mars

Famous Olympic drug scandals

Russian athletics scandal

TRENDING ON REUTERS

[Document 2]

Related: ELECTION 2016, POLITICS

Politics | Wed May 27, 2015 7:12pm EDT Majority of Americans back new trade deals: Reuters/Ipsos poll BY KRISTA HUGHES

U.S. Secretary of State John Kerry speaks about the Trans-Pacific Partnership (TPP) during a trade speech at Boeing's 737 airplane factory in Renton, Washington, United States May 19, 2015. REUTERS/SAUL LOEB/POOL

A majority of Americans support new trade deals, a Reuters/Ipsos poll showed on Wednesday, even as President Barack Obama struggles to win support for legislation key to sealing a signature Pacific Rim trade agreement.

The House of Representatives is expected to consider a bill to speed trade deals through Congress in June, after it passed the Senate by a comfortable margin.

TALES FROM THE TRAIL

social media

Cruz goes for crowdfunding, 'one small donor at a time'

Combating climate change a 'smart economic approach': Clinton

ADVERTISEMENT

TRENDING ON REUTERS

U.S. charges three in huge cyberfraud targeting JPMorgan, others VIDEO	
	_

Syrian army enters Aleppo air base after	
Islamic State siege: state TV	2

Iran has stopped dismantling nuclear 3 centrifuges: senior official

Word	Distance to Centroid
Fretilin	0.298141
hard-left	0.299046
Smer	0.300370
Ovp	0.300925
Greens	0.303287
Socialists	0.305534
Party	0.310117
Peronist	0.321366
Kke	0.324051
Pis	0.333701
Congress-led	0.336214
Centrists	0.340830
Pro-eu	0.343883

- <u>Political Party</u>
- Concept Frequency: Doc 1: 5 vs. Doc 2: 27

Word	Distance to Centroid
Six-nation	0.341851
Negotiations	0.358357
Final-status	0.358551
Talks	0.369950
Accord	0.384951
Two-track	0.388305
Agreement	0.388699
Working-level	0.401054
Long-stalled	0.411923
Trilateral	0.416301
Deal	0.417467
Disarmament	0.423539
Israeli-Syrian	0.424372

- <u>Negotiation & Treaty</u>
 - Concept Frequency:
 <u>Doc 1: 1 vs. Doc 2: 36</u>

Word	Distance to Centroid
Astros	0.209113
playoff-bound	0.216279
Phillies	0.231677
last-place	0.232075
Timberwolves	0.237807
Mariners	0.242180
Flyers	0.245423
Thrashers	0.247595
Sabres	0.250336
Devils	0.252015
Blackhawks	0.255871
Orioles	0.256698
Athletics	0.260109

• Concept Frequency: <u>Doc 1: 14 vs. Doc 2: 0</u>

Word	Distance to Centroid
While	0.378267
But	0.384359
However	0.387299
Although	0.388328
Only	0.417179
Now	0.421535
Then	0.424409
Also	0.425922
Another	0.439093
The	0.449224
Мау	0.449749
Leaving	0.451124
That	0.451503

• <u>Conjunctions</u>

Concept Frequency:
 Doc 1: 146 vs. Doc 2: 198

Word	Distance to Centroid
Contravenes	0.368736
Non-discrimination	0.389781
Contravened	0.395901
Unenforceable	0.396915
Prohibit	0.400195
Obliging	0.402253
Supersede	0.405173
Enshrine	0.408061
Codify	0.411534
Prohibiting	0.411764
Contravene	0.415466
Specifies	0.417802
Reclassifying	0.418312

- <u>To oppose/revise (legal context)</u>
 - Concept Frequency:
 <u>Doc 1: 0 vs. Doc 2: 18</u>

Word	Distance to Centroid
Fourth-inning	0.188195
Aybar	0.201127
Pinch-hit	0.217082
Pinch-hitter	0.221174
Hitless	0.227714
First-inning	0.236647
DH	0.240897
Two-out	0.241593
Okajima	0.249996
No-hit	0.250199
Delmon	0.253375
Kozma	0.255309
Eighth-inning	0.255412

- <u>Baseball Terminologies</u>
 - Concept Frequency:
 <u>Doc 1: 68 vs. Doc 2: 1</u>

Word	Distance to Centroid		
Sirnak	0.190246		
Barzeh	0.216446		
Qaboun	0.218347		
Sidon	0.218943		
Mukalla	0.226163		
Mosul	0.231129		
Hama	0.232689		
Adhamiya'	0.233669		
Ramadi	0.235161		
Jobar	0.241562		
Vabroud	0.242106		
Kerbala	0.242618		
Gunbattles	0.243645		

Şırnak

Town in Turkey

Şırnak is a Turkish town in southeastern Turkey. It is the capital of Şırnak Province, a new province that split from the Hakkari province. Wikipedia

- <u>Middle Eastern Cities</u>
- Concept Frequency:
 <u>Doc 1: 37 vs. Doc 2: 11</u>

Document Classification

- Create triplets of documents (2 from same class and 1 from different class)
- Using cosine similarity as distance metric, we want to classify a document within a triplet that is from a different class (most distant from the other two documents)
- Tested on 280,000 triplets

Example:

(Document ID, Class Label)

[(9699, 'businessNews'), (3817, 'businessNews'), (38841, 'entertainmentNews')]

→ (38841, 'entertainmentNews') (Correct)

→ (3817, 'businessNews') (Incorrect)

F1 Score -Document Classification

F1 Score -Document Classification

Dimension	Doc2vec	Word2vec Averaging	Word2vec Clustering (best)	Word2vec Clustering (average)
100	0.771861	0.696642857	0.662660714	0.616532601
200	0.762332	0.68935	0.6529	0.614233608
300	0.739907	0.533425	0.660646429	0.616769414
400	0.739675	0.579921429	0.639146429	0.614428297
500	0.737425	0.529971429	0.652560714	0.617219597
600	0.735929	0.526042857	0.647025	0.614812363
700	0.733518	0.512546429	0.650364286	0.616948168
800	0.736554	0.558592857	0.654253571	0.615760897
900	0.734243	0.531871429	0.657182143	0.617507509
1000	0.733321	0.517432143	0.664453571	0.616804762
2000	0.731429	0.521503571	0.655253571	0.616660714
3000	0.727796	0.488457143	0.657810714	0.61490348

Conclusion

- Word2Vec Clustering method provides interpretable power to distributed representation of documents
- It is a hybrid method that incorporates the advantages of BOW and Doc2Vec Approach
- It can...
 - provide explanations on what each component of document vector indicates
 - further provide concrete explanation behind the results generated from additional text mining techniques based on word2vec clustering method
 - Test whether attempted hyperparameter of text mining model is appropriate or not

Paper Outline

1. Introduction

- Growing importance of text mining
- Need for interpretability for applicability (representation itself is not the end)
- 2. Background
 - BOW
 - Extension of BOW (LSA)
 - Word2Vec & Doc2Vec
- 3. Proposed Method
- 4. Data Set & Task Description
- 5. Result
 - Quantitative F1 Score
 - Qualitative Actual examples
- 6. Conclusion

Reference

- 1. Aggarwal, Charu C., Alexander Hinneburg, and Daniel A. Keim. On the surprising behavior of distance metrics in high dimensional space. Springer Berlin Heidelberg, 2001.
- 2. Dai, Andrew M., et al. "Document Embedding with Paragraph Vectors." NIPS Deep Learning Workshop. 2014.
- 3. Kriegel, Hans-Peter, Peer Kröger, and Arthur Zimek. "Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering." ACM Transactions on Knowledge Discovery from Data (TKDD) 3.1 (2009): 1.
- 4. Le, Quoc V., and Tomas Mikolov. "Distributed representations of sentences and documents." arXiv preprint arXiv:1405.4053 (2014).
- 5. Mikolov, Tomas, et al. "Distributed representations of words and phrases and their compositionality." Advances in Neural Information Processing Systems. 2013.
- 6. R. Liu, D. Wang, and C. Xing, "Document classification based on word vectors." ISCSLP, 2014
- 7. Rong, Xin. "word2vec Parameter Learning Explained." arXiv preprint arXiv:1411.2738 (2014).

Reference

- 8. Turney, Peter D., and Patrick Pantel. "From frequency to meaning: Vector space models of semantics." Journal of artificial intelligence research 37.1 (2010): 141-188.
- Xing, Chao, et al. "Document classification with distributions of word vectors." Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA). IEEE, 2014.
- 10. Zhong, Shi. "Efficient online spherical k-means clustering." Neural Networks, 2005. IJCNN05. Proceedings. 2005 IEEE International Joint Conference on. Vol. 5. IEEE, 2005.