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Ascendance of “Unstructured Data”

* Due to the proliferation of smart phones and decreasing data storage cost, the
amount of data being generated has drastically increased over the years

* Unstructured data is a realm of unexplored potential that provides an insight into
consumers’ psyche, as most of them are being generated directly from the
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What kind of unstructured data are companies interested in?

* Text data, as one of the most common form of unstructured data, has generated
great interest amongst companies

» Extracting insight through text mining essentially begins with analyzing documents

Are there large unstructured or semi-structured data repositories (ie, text, rich
media, etc.) in your business that you would like to analyze, monitor or query - as
opposed to search/retrieve?
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Then, how should we represent a document?

=N

« Words Doc 1:[1,4,3,0, ...]
e Paragraphs Doc 2:[5,2,80,...]
e Themes

* Main arguments

e A documentis a complex system composed with words, paragraphs and many
explicit and implicit features

* In order for computers to extract insights from such complex system, documents
need to be represented in some Kkind of numerical format



Bag of Words Approach

 Bag of Word Hypothesis: frequencies of words in a document tend to indicate the
relevance of the documents

* Basically, BOW uses token frequencies as features for representing a document

[Document 1]:

Arsenal’s annual injury problem is underway. Their thin squad will be put to the
test by a Swansea City team looking to build on a vital win at Aston Villa.

Arsenal have a whole host of injury problems to contend with. The Gunners
currently sit top of the Premier League’s infamous injury table. Eight senior
players will be unable to take part at the Liberty Stadium
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Bag of Words Approach

 Pros: It's intuitive!
* A feature of document vectors uniquely correspond to a specific token
e Users can directly understand the components of the documents
e It can provide clear explanation for why and how certain documents are
different from each other

» Cons: Dimension of a vector increases quickly
* A number of words in a document is NOT small
* Words with similar meanings (not necessarily synonyms) and identical words
with different grammatical structures are considered as individual tokens

[Document 1]:

Arsenal’s annual injury problem is underway. Their thin squad will be put to the
test by a Swansea City team looking to build on a vital win at Aston Villa.

Arsenal have a whole host of injury problems to contend with. The Gunners
currently sit top of the Premier League’s infamous injury table. Eight senior
players will be unable to take part at the Liberty Stadium



Distributed Representation: Word2Vec & Doc2Vec

Mikolov, Tomas, et al. "Distributed representations of words and phrases and
their compositionality.” Advances in Neural Information Processing Systems.
2013.

» Distributed Hypothesis: words that occur in similar contexts (neighboring words)
tend to have similar meanings

e Based on this assumption, simple neural network is used to embed words into
continuous vector space

e Train the weights of the network so that an input word to the network can predict
its neighboring words within certain window size



Simple Word2Vec Architecture

Amongst vocabulary of size V, let’s say we want to predict one target word(output)
when we are given one context word (input) = bigram structure

Input vector is an one-hot encoded vector (only one node with for designated
context word will be 1)

Weight matrix Wy xy and Wy, embed context and word into continuous vector
space, respectively
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Simple Word2Vec Architecture

* Non-linearity (soft-max) is incorporated only for computing the output

* 1y,: vector representation of the input context word w; (xTW, k-th row of W)
. v’w,j: vector representation of the output word (j-th column of W)

* Train the weights via gradient descent to maximize conditional (log) probability of
observing the actual output word w, given the input context word w;

* Asaresult, word vectors with similar context (thus, meaning) will be located close
to each other in the embedding space
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Complete Word2Vec Architecture
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Result of Word2Vec
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* Word vectors with similar context (thus, belonging to a similar concept) will be
located close to each other in the resulting embedding space
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Using Word2Vec for Document Representation

Xing, Chao, et al. "Document classification with distributions of word vectors."
Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit
and Conference (APSIPA). IEEE, 2014.

» Simple average pooling approach:

1 Ji
v = T E Ei._j
i J=1

* Derives a document vector as the centroid of word vectors within the document

* Bias towards words without significant contribution to representing the
semantics of the documents

11



Classifier on Classifier
Average/Concatenate [T Average/Concatenate 0Im
AN o o el S
OIan Ooom A
t t t 1 1
Ward Matrix W W W Paragraph Matrix---—» W W W
T | | Paragraph t]:lm c;t sat

the cat gat .
id

<Word2Vec> <Paragraph2Vec>

Le, Q.V, & Mikolov, T. (2014). Distributed representations of sentences and
documents

e Extension of Word2Vec: a document is considered as an extra word

* Document (paragraph) id represents one-hot encoded vector of documents

* As aresult, documents are also embedded into continuous vector space
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Next Generation of Document Representation?

-". -
-
a0 =
-— — .
——y— -, - e,
e : b
85 -
g
= L,
B0 4,
B \
,
,
TS - ™
=
-
mma
—
5 [
1
100 00 1 DD

Dirmenssonality

Model —— fug. word embeddings —— LDA, -8 PV P wilc word training

Figure 4: Results of experiments on the hand-built Wikipedia triplet dataset.

Table 3: Performances of different methods on hand-built triplets of Wikipedia articles on the best
performing dimensionality.

Model Embedding Accuracy
dimensions/topics
Paragraph vectors 10000 93.0%
LDA 5000 B82%
Averaged word embeddings 3000 B4.9%
Bag of words 26.0%

Dai, Andrew M,, et al. "Document Embedding with Paragraph Vectors." NIPS Deep
Learning Workshop. 2014.
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Distributed Representation Approach

* Pros: Good Performance!

* Document vector successfully captures useful yet unknown features for
representing documents (validated through document clustering and
classification)

* Dimension of a document vector is restricted to certain size

e (Cons: Not intuitive!
e As with other neural network based models, unknown feature are used to
represent a document
* Each value in a document vector doesn’t provide any explicit explanation about
the document
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Proposed Method

1. Train Word2Vec from the collection of documents
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Proposed Method

2. Cluster word2vec generated vectors to create clusters of concepts
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Proposed Method

3. Represent the documents by counting the number of times that their words
belong to these different concept clusters (Similar to BOW approach!)

Concept Cluster 1 = {Arsenal, Arsenal’s, Aston Villa, Swansea City, Gunners...}
Concept Cluster 2 = {Squad, Players...}

[Document 1]:
Arsenal’s annual injury problem is underway. Their thin squad will be put to the test
by a Swansea City team looking to build on a vital win at Aston Villa.

[Document 2]:

Arsenal have a whole host of injury problems to contend with. The Gunners currently
sit top of the Premier League’s infamous injury table. Eight senior players will be
unable to take part at the Liberty Stadium

Concept Concept
_

Document 1

Document 2 2 1
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Proposed Framework

4. Evaluate the effectiveness of the document representation through document
clustering task using the document vectors created from the previous step

Concept Concept
_

Document 1
Document 2 2 1
Document n 0 8
A ¥
L Clustering
@
. =
o 0y
®
= =

Scattered Document Document Clusters
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Dataset: <Reuters>

Total Number of Documents: 203,923 (2006. 09. 01 ~ 2015. 06. 06)

* Divided into 8 different categories

e Total number of sentences: 3,076,016

e Total number of tokens: 89,146,031

e Total number of unique tokens: 65,159

e Dimension of Doc2Vec and Word2Vec set as 500

Entertainment 25,500
Sports 25,500
Technology 25,500
Market 25,423
Politics 25,500
Business 25,500
World 25,500

Health 25,500 ,



Spherical K Means

* To deal with these issues of high dimensional clustering, spherical k means
algorithm has been used

e Essentially same as k means algorithm but with cosine similarity as a measure of
proximity instead of Euclidean distance

¢ Chosen best result in terms of inertia

Algorithm: spherical k-means (SPKM)
Input: A set of N wnit-length data vectors X' = {x;, ..., xx}
in IRY and the number of clusters K
Output: A partition of the data vectors given by the cluster
identity vector ¥V = {y1...ux} vn € {1,.., K} .
Steps:
|. Imtiahzahon: mitiahize the wnit-length cluster centrond
vectors {pn. ..., i}
2. Data assignment: for each data vector x,, set
Yn = ATEMAX X, f1y |
3. Centromid estimation: for cluster k., let
AL = {x.|y. = k}. the centroid is estimated as

e = ZxE,r* x.f'r” E;.-_E_,:t"k xll .
4. Stop 1f V does not change, otherwise go back to Step 2a.

Fig. 1. Spherical k-means algorithm.
20
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* Depending on the value of K used for clustering word vectors, the performance of
document vectors vary greatly

e If appropriate value of K is chosen (in this case, K= 110), proposed method can
outperform Doc2Vec in document clustering, indicating better document

representation 1



Word Clusters

Pharmaceutical Terminologies

two-drug

3

e Military Terminologies

Genzymes

Suppressant

Vectibix

Adderall

Intravenously

Crestor

non-prescription

Antivirals

Sandoz

Discontinuing

anti-retroviral

anti-viral

Wl Wl Wl wl Wl w w |l w| w| w|w|w

dni 47
Expeditionary 47
Panettas 47
maj. 47
Marshals 47
Operationally 47
Chiefs 47
pentagon. 47
Commandant 47
Stationing 47
Troop 47
Defences 47
Lieutenant 47
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Word Clusters

* Garment Related Terminologies e Baseball Terminologies
handbags 60 dickey 72
lagerfeld 60 beltre 72

lipstick 60 peavy 72
disheveled 60 runs 72
flowing 60 ervin 72
bra 60 pinch-hitter 72
figurines 60 cincinnatis 72
embellished 60 batting 72
hoodie 60 jacoby 72
garlands 60 cubs 72
masculine 60 sabathia 72
tuxedos 60 prado 72
garish 60 hits 72

23



Word Clusters

ST T

Document 1

Document 2 2 0 33

Due to 47" feature, document 1 is
something about military.

Due to 72" feature, document 2 is
something about baseball.
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Conclusion

* The proposed method incorporates both the effective performance of the
distributed representation and intuitive explanatory power of BOW representation

* For certain value of K used for clustering word2vec vectors, the proposed method, at
least in terms of document clustering, can represent the documents at a similar
performance level as Doc2Vec

* As the performance of Doc2Vec can be sensitive to the number of dimensions (the
number of hidden nodes), the proposed method needs to be compared with various
Doc2Vec models resulting from different number of dimensions

* Performance of the proposed method should also be checked for document

classification task in order to substantiate the effective document representation of
the proposed method
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