Chapter 7 – K-Nearest-Neighbor

Data Mining for Business Intelligence

Shmueli, Patel & Bruce

© Galit Shmueli and Peter Bruce 2010

Characteristics

Data-driven, not model-driven

Makes no assumptions about the data

Basic Idea

For a given record to be classified, identify nearby records

"Near" means records with similar predictor values X_1 , X_2 , ... X_p

Classify the record as whatever the predominant class is among the nearby records (the "neighbors")

How to measure "nearby"?

The most popular distance measure is **Euclidean distance**

$$\sqrt{(x_1 - u_1)^2 + (x_2 - u_2)^2 + \dots + (x_p - u_p)^2}$$

Choosing k

K is the number of nearby neighbors to be used to classify the new record

- *K*=1 means use the single nearest record
- *K*=5 means use the 5 nearest records

Typically choose that value of *k* which has lowest error rate in validation data

Low k vs. High k

Low values of k (1, 3, ...) capture local structure in data (but also noise)

High values of *k* provide more smoothing, less noise, but may miss local structure

Note: the extreme case of k = n (i.e., the entire data set) is the same as the "naïve rule" (classify all records according to majority class)

Example: Riding Mowers

Data: 24 households classified as owning or not owning riding mowers

Predictors: Income, Lot Size

Income	Lot_Size	Ownership	
60.0	18.4	owner	
85.5	16.8	owner	
64.8	21.6	owner	
61.5	20.8	owner	
87.0	23.6	owner	
110.1	19.2	owner	
108.0	17.6	owner	
82.8	22.4	owner	
69.0	20.0	owner	
93.0	20.8	owner	
51.0	22.0	owner	
81.0	20.0	owner	
75.0	19.6	non-owner	
52.8	20.8	non-owner	
64.8	17.2	non-owner	
43.2	20.4	non-owner	
84.0	17.6	non-owner	
49.2	17.6	non-owner	
59.4	16.0	non-owner	
66.0	18.4	non-owner	
47.4	16.4	non-owner	
33.0	18.8	non-owner	
51.0	14.0	non-owner	
63.0	14.8	non-owner	

XLMiner Output

For each record in validation data (6 records) XLMiner finds neighbors amongst training data (18 records).

The record is scored for $k=1, k=2, \dots k=18$.

Best *k* appears to be *k*=8.

k = 9, k = 10, k=14 also share low error rate, but best to choose lowest k.

Value of k	% Error Training	% Error Validation	
1	0.00	33.33	
2	16.67	33.33	
3	11.11	33.33	
4	22.22	33.33	
5	11.11	33.33	
6	27.78	33.33	
7	22.22	33.33	
8	22.22	16.67	< Best k
9	22.22	16.67	
10	22.22	16.67	
11	16.67	33.33	
12	16.67	16.67	
13	11.11	33.33	
14	11.11	16.67	
15	5.56	33.33	
16	16.67	33.33	
17	11.11	33.33	
18	50.00	50.00	

Using K-NN for Prediction (for Numerical Outcome)

- Instead of "majority vote determines class" use average of response values
- May be a weighted average, weight decreasing with distance

Advantages

- Simple
- No assumptions required about Normal distribution, etc.
- Effective at capturing complex interactions among variables without having to define a statistical model

Shortcomings

• Required size of training set increases exponentially with # of predictors, p

This is because expected distance to nearest neighbor increases with p (with large vector of predictors, all records end up "far away" from each other)

- In a large training set, it takes a long time to find distances to all the neighbors and then identify the nearest one(s)
- These constitute "curse of dimensionality"

Dealing with the Curse

- Reduce dimension of predictors (e.g., with PCA)
- Computational shortcuts that settle for "almost nearest neighbors"

Summary

- Find distance between record-to-be-classified and all other records
- Select k-nearest records

Classify it according to majority vote of nearest neighbors Or, for prediction, take the as average of the nearest neighbors

 "Curse of dimensionality" – need to limit # of predictors