Overview

Data Mining for Business Intelligence

Shmueli, Patel & Bruce

© Galit Shmueli and Peter Bruce 2010

Core Ideas in Data Mining

- Classification
- Prediction
- Association Rules
- Data Reduction
- Data Exploration
- Visualization

Supervised Learning

- Goal: Predict a single "target" or "outcome" variable
- Training data, where target value is known
- Score to data where value is not known
- Methods: Classification and Prediction

Unsupervised Learning

- Goal: Segment data into meaningful segments; detect patterns
- There is no target (outcome) variable to predict or classify
- Methods: Association rules, data reduction & exploration, visualization

Supervised: Classification

- Goal: Predict categorical target (outcome) variable
- Examples: Purchase/no purchase, fraud/no fraud, creditworthy/not creditworthy...
- Each row is a case (customer, tax return, applicant)
- Each column is a variable
- Target variable is often binary (yes/no)

Supervised: Prediction

- Goal: Predict numerical target (outcome) variable
- Examples: sales, revenue, performance
- As in classification:
- Each row is a case (customer, tax return, applicant)
- Each column is a variable
- Taken together, classification and prediction constitute "predictive analytics"

Unsupervised: Association Rules

- Goal: Produce rules that define "what goes with what"
- Example: "If X was purchased, Y was also purchased"
- Rows are transactions
- Used in recommender systems "Our records show you bought X, you may also like Y"
- Also called "affinity analysis"

Unsupervised: Data Reduction

- Distillation of complex/large data into simpler/smaller data
- Reducing the number of variables/columns (e.g., principal components)
- Reducing the number of records/rows (e.g., clustering)

Unsupervised: Data Visualization

- Graphs and plots of data
- Histograms, boxplots, bar charts, scatterplots
- Especially useful to examine relationships between pairs of variables

Data Exploration

- Data sets are typically large, complex & messy
- Need to review the data to help refine the task
- Use techniques of Reduction and Visualization

The Process of Data Mining

Steps in Data Mining

- 1. Define/understand purpose
- 2. Obtain data (may involve random sampling)
- 3. Explore, clean, pre-process data
- 4. Reduce the data; if supervised DM, partition it
- 5. Specify task (classification, clustering, etc.)
- 6. Choose the techniques (regression, CART, neural networks, etc.)
- 7. Iterative implementation and "tuning"
- 8. Assess results compare models
- 9. Deploy best model

Obtaining Data: Sampling

- Data mining typically deals with huge databases
- Algorithms and models are typically applied to a sample from a database, to produce statisticallyvalid results
- XLMiner, e.g., limits the "training" partition to 10,000 records
- Once you develop and select a final model, you use it to "score" the observations in the larger database

Rare event oversampling

- Often the event of interest is rare
- Examples: response to mailing, fraud in taxes, ...
- Sampling may yield too few "interesting" cases to effectively train a model
- A popular solution: oversample the rare cases to obtain a more balanced training set
- Later, need to adjust results for the oversampling

Pre-processing Data

Types of Variables

- Determine the types of pre-processing needed, and algorithms used
- Main distinction: Categorical vs. numeric
- Numeric
 - Continuous
 - Integer
- Categorical
 - Ordered (low, medium, high)
 - Unordered (male, female)

Variable handling

- Numeric
 - Most algorithms in XLMiner can handle numeric data
 - May occasionally need to "bin" into categories
- Categorical
 - Naïve Bayes can use as-is
 - In most other algorithms, must create binary dummies (number of dummies = number of categories – 1)

Detecting Outliers

- An outlier is an observation that is "extreme", being distant from the rest of the data (definition of "distant" is deliberately vague)
- Outliers can have disproportionate influence on models (a problem if it is spurious)
- An important step in data pre-processing is detecting outliers
- Once detected, domain knowledge is required to determine if it is an error, or truly extreme.

Detecting Outliers

 In some contexts, finding outliers is the purpose of the DM exercise (airport security screening). This is called "anomaly detection".

Handling Missing Data

- Most algorithms will not process records with missing values. Default is to drop those records.
- Solution 1: Omission
 - If a small number of records have missing values, can omit them
 - If many records are missing values on a small set of variables, can drop those variables (or use proxies)
 - If many records have missing values, omission is not practical
- Solution 2: Imputation
 - Replace missing values with reasonable substitutes
 - Lets you keep the record and use the rest of its (nonmissing) information

Normalizing (Standardizing) Data

- Used in some techniques when variables with the largest scales would dominate and skew results
- Puts all variables on same scale
- Normalizing function: Subtract mean and divide by standard deviation (used in XLMiner)
- Alternative function: scale to 0-1 by subtracting minimum and dividing by the range
 - Useful when the data contain dummies and numeric

The Problem of Overfitting

- Statistical models can produce highly complex explanations of relationships between variables
- The "fit" may be excellent
- When used with <u>new</u> data, models of great complexity do not do so well.

100% fit – not useful for <u>new</u> data

Overfitting (cont.)

Causes:

- Too many predictors
- A model with too many parameters
- Trying many different models

Consequence: Deployed model will not work as well as expected with completely new data.

Partitioning the Data

Test Partition

- When a model is developed on training data, it can overfit the training data (hence need to assess on validation)
- Assessing multiple models on same validation data can overfit validation data Reevaluate model(s)
- Some methods use the validation data to choose a parameter. This too can lead to overfitting the validation data
- Solution: final selected model is applied to a <u>test partition</u> to give unbiased estimate of its performance on new data

Example – Linear Regression Boston Housing Data

А	В	С	D	Е	F	G	Н	I	J	К	L	М	Ν	0
CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	ТАХ	PTRATIO	В	LSTAT	MEDV	CAT. MEDV
0.006	18	2.31	0	0.54	6.58	65.2	4.09	1	296	15.3	397	5	24	0
0.027	0	7.07	0	0.47	6.42	78.9	4.97	2	242	17.8	397	9	21.6	0
0.027	0	7.07	0	0.47	7.19	61.1	4.97	2	242	17.8	393	4	34.7	1
0.032	0	2.18	0	0.46	7.00	45.8	6.06	3	222	18.7	395	3	33.4	1
0.069	0	2.18	0	0.46	7.15	54.2	6.06	3	222	18.7	397	5	36.2	1
0.030	0	2.18	0	0.46	6.43	58.7	6.06	3	222	18.7	394	5	28.7	0
0.088	12.5	7.87	0	0.52	6.01	66.6	5.56	5	311	15.2	396	12	22.9	0
0.145	12.5	7.87	0	0.52	6.17	96.1	5.95	5	311	15.2	397	19	27.1	0
0.211	12.5	7.87	0	0.52	5.63	100	6.08	5	311	15.2	387	30	16.5	0
0.170	12.5	7.87	0	0.52	6.00	85.9	6.59	5	311	15.2	387	17	18.9	0

- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town.
- CHAS Charles River dummy variable (1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- RAD index of accessibility to radial highways
- TAX full-value property-tax rate per \$10,000

PTRATIO pupil-teacher ratio by town

- B 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in \$1000

Partitioning the data

Standard Data Partition 🛛 🛛 🔀						
Data source Worksheet: Data	Workbook: Boston_Housing.xls					
Data range: \$A\$1:\$O\$507	_					
# Rows in data: 506 # Columns in data: 15						
Variables						
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD						
Partitioning options						
Use partition variable Pick up rows randomly Partitioning percentages when picking	Set seed 🔽 12345					
Automatic Specify percentages Egual #records in training, validation	Iraining Set 60 % Validation Set 40 % n & test set Test Set 0 %					
Help	OK Cancel					
Specifies names of all the worksheets ava	illable in the selected workbook.					

Using XLMiner for Multiple Linear Regression

Aultiple Linear Regression - Step 1 of 2					
Data source Worksheet: Data_Partition1	workbook: Boston_Housing.xls	-			
Data range: # Rows	_ # Columns: 1	.5			
Variables Variation First row contains headers					
<u>V</u> ariables in input data	Input variables				
CAT. MEDV	≥ CRIM ZN INDUS CHAS NOX RM AGE				
W <u>e</u> ight variable:					
Not applicable for prediction # Classes: T Specify "Succ Specify initial cut	ccess" class (for Lift Chart):	3			
Help	Cancel < Back Next > Fini	sh			
Specifies names of all the worksheets	s available in the selected workbook.				

Specifying Output

Multiple Linear Regr	ession - Step 2 o	f 2 🛛 🔀				
Force constant term to) zero					
Output options on train						
Fitted values	ANOVA table	ANOVA table				
Residuals	□ <u>V</u> ariance-covari	ance matrix				
Unstandardized	Best s <u>u</u> bset	Advanced				
Score Training data	Score valida	ation data				
🔽 Detailed report	🔽 Detailed	Detailed rep <u>o</u> rt Summary report Lift charts				
Summary report	🔽 Summar					
🔲 Lift charts	🔽 Lift cha					
- Score test data	Score new	data				
☐ De <u>t</u> ailed report	In work	sheet				
☐ Summary report ☐ Lift <u>c</u> harts	🥅 In data	pase				
Help Can	cel < Back	Next > Einish				
If checked, output will in	clude Fitted values.					

Prediction of Training Data

Row Id.	Predicted Value	Actual Value	Residual
1	30.24690555	24	-6.246905549
4	28.61652272	33.4	4.783477282
5	27.76434086	36.2	8.435659135
6	25.6204032	28.7	3.079596801
9	11.54583087	16.5	4.954169128
10	19.13566187	18.9	-0.235661871
12	21.95655773	18.9	-3.05655773
17	20.80054199	23.1	2.299458015
18	16.94685562	17.5	0.553144385

Prediction of Validation Data

Row Id.	Predicted Value	Actual Value	Residual
2	25.03555247	21.6	-3.435552468
3	30.1845219	34.7	4.515478101
7	23.39322259	22.9	-0.493222593
8	19.58824389	27.1	7.511756109
11	18.83048747	15	-3.830487466
13	21.20113865	21.7	0.498861352
14	19.81376359	20.4	0.586236414
15	19.42217211	18.2	-1.222172107
16	19.63108414	19.9	0.268915856

Summary of errors

Training Data scoring - Summary Report

Total sum of squared errors	RMS Error	Average Error
6977.106	4.790720883	3.11245E-07

Validation Data scoring - Summary Report

Total sum of squared errors	RMS Error	Average Error
4251.582211	4.587748542	-0.011138034

RMS error

Error = actual - predicted

RMS = Root-mean-squared error = Square root of average squared error

In previous example, sizes of training and validation sets differ, so only RMS Error and Average Error are comparable

Using Excel and XLMiner for Data Mining

- Excel is limited in data capacity
- However, the training and validation of DM models can be handled within the modest limits of Excel and XLMiner
- Models can then be used to score larger databases
- XLMiner has functions for interacting with various databases (taking samples from a database, and scoring a database from a developed model)

Summary

- Data Mining consists of supervised methods (Classification & Prediction) and unsupervised methods (Association Rules, Data Reduction, Data Exploration & Visualization)
- Before algorithms can be applied, data must be characterized and pre-processed
- To evaluate performance and to avoid overfitting, data partitioning is used
- Data mining methods are usually applied to a sample from a large database, and then the best model is used to score the entire database