Chapter 14 – Cluster Analysis

Data Mining for Business Intelligence

Shmueli, Patel & Bruce

© Galit Shmueli and Peter Bruce 2010
Clustering: The Main Idea

Goal: Form groups (clusters) of similar records

Used for segmenting markets into groups of similar customers

Example: Claritas segmented US neighborhoods based on demographics & income: “Furs & station wagons,” “Money & Brains”, ...
Other Applications

- Periodic table of the elements
- Classification of species
Classification of Mammals
Other Applications

- Grouping securities in portfolios
- Grouping firms for structural analysis of economy
- Army uniform sizes
Example: Public Utilities

Goal: find clusters of similar utilities

Data: 22 firms, 8 variables
- Fixed-charge covering ratio
- Rate of return on capital
- Cost per kilowatt capacity
- Annual load factor
- Growth in peak demand
- Sales
- % nuclear
- Fuel costs per kwh
<table>
<thead>
<tr>
<th>Company</th>
<th>Fixed_charge</th>
<th>RoR</th>
<th>Cost</th>
<th>Load</th>
<th>Δ Demand</th>
<th>Sales</th>
<th>Nuclear_Fuel_Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arizona</td>
<td>1.06</td>
<td>9.2</td>
<td>151</td>
<td>54.4</td>
<td>1.6</td>
<td>9077</td>
<td>0.628</td>
</tr>
<tr>
<td>Boston</td>
<td>0.89</td>
<td>10.3</td>
<td>202</td>
<td>57.9</td>
<td>2.2</td>
<td>5088</td>
<td>1.555</td>
</tr>
<tr>
<td>Central</td>
<td>1.43</td>
<td>15.4</td>
<td>113</td>
<td>53</td>
<td>3.4</td>
<td>9212</td>
<td>1.058</td>
</tr>
<tr>
<td>Commonwealth</td>
<td>1.02</td>
<td>11.2</td>
<td>168</td>
<td>56</td>
<td>0.3</td>
<td>6423</td>
<td>0.7</td>
</tr>
<tr>
<td>Con Ed NY</td>
<td>1.49</td>
<td>8.8</td>
<td>192</td>
<td>51.2</td>
<td>1</td>
<td>3300</td>
<td>2.044</td>
</tr>
<tr>
<td>Florida</td>
<td>1.32</td>
<td>13.5</td>
<td>111</td>
<td>60</td>
<td>-2.2</td>
<td>11127</td>
<td>22.5</td>
</tr>
<tr>
<td>Hawaiian</td>
<td>1.22</td>
<td>12.2</td>
<td>175</td>
<td>67.6</td>
<td>2.2</td>
<td>7642</td>
<td>1.652</td>
</tr>
<tr>
<td>Idaho</td>
<td>1.1</td>
<td>9.2</td>
<td>245</td>
<td>57</td>
<td>3.3</td>
<td>13082</td>
<td>0.309</td>
</tr>
<tr>
<td>Kentucky</td>
<td>1.34</td>
<td>13</td>
<td>168</td>
<td>60.4</td>
<td>7.2</td>
<td>8406</td>
<td>0.862</td>
</tr>
<tr>
<td>Madison</td>
<td>1.12</td>
<td>12.4</td>
<td>197</td>
<td>53</td>
<td>2.7</td>
<td>6455</td>
<td>0.623</td>
</tr>
<tr>
<td>Nevada</td>
<td>0.75</td>
<td>7.5</td>
<td>173</td>
<td>51.5</td>
<td>6.5</td>
<td>17441</td>
<td>0.768</td>
</tr>
<tr>
<td>New England</td>
<td>1.13</td>
<td>10.9</td>
<td>178</td>
<td>62</td>
<td>3.7</td>
<td>6154</td>
<td>1.897</td>
</tr>
<tr>
<td>Northern</td>
<td>1.15</td>
<td>12.7</td>
<td>199</td>
<td>53.7</td>
<td>6.4</td>
<td>7179</td>
<td>0.527</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>1.09</td>
<td>12</td>
<td>96</td>
<td>49.8</td>
<td>1.4</td>
<td>9673</td>
<td>0.588</td>
</tr>
<tr>
<td>Pacific</td>
<td>0.96</td>
<td>7.6</td>
<td>164</td>
<td>62.2</td>
<td>-0.1</td>
<td>6468</td>
<td>0.9</td>
</tr>
<tr>
<td>Puget</td>
<td>1.16</td>
<td>9.9</td>
<td>252</td>
<td>56</td>
<td>9.2</td>
<td>15991</td>
<td>0.62</td>
</tr>
<tr>
<td>San Diego</td>
<td>0.76</td>
<td>6.4</td>
<td>136</td>
<td>61.9</td>
<td>9</td>
<td>5714</td>
<td>1.92</td>
</tr>
<tr>
<td>Southern</td>
<td>1.05</td>
<td>12.6</td>
<td>150</td>
<td>56.7</td>
<td>2.7</td>
<td>10140</td>
<td>1.108</td>
</tr>
<tr>
<td>Texas</td>
<td>1.16</td>
<td>11.7</td>
<td>104</td>
<td>54</td>
<td>-2.1</td>
<td>13507</td>
<td>0.636</td>
</tr>
<tr>
<td>Wisconsin</td>
<td>1.2</td>
<td>11.8</td>
<td>148</td>
<td>59.9</td>
<td>3.5</td>
<td>7287</td>
<td>0.702</td>
</tr>
<tr>
<td>United</td>
<td>1.04</td>
<td>8.6</td>
<td>204</td>
<td>61</td>
<td>3.5</td>
<td>6650</td>
<td>2.116</td>
</tr>
<tr>
<td>Virginia</td>
<td>1.07</td>
<td>9.3</td>
<td>174</td>
<td>54.3</td>
<td>5.9</td>
<td>10093</td>
<td>1.306</td>
</tr>
</tbody>
</table>
Sales & Fuel Cost:
3 rough clusters can be seen

High fuel cost, low sales

Low fuel cost, high sales

Low fuel cost, low sales
Clustering is Ambiguous

How many clusters?

- Two Clusters
- Four Clusters
- Six Clusters
Extension to More Than 2 Dimensions

In prior example, clustering was done by eye

Multiple dimensions require formal algorithm with

- A distance measure
- A way to use the distance measure in forming clusters

We will consider two algorithms: **hierarchical** and **non-hierarchical**
Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram
Partitional Clustering

Original Points

A Partitional Clustering
Hierarchical Clustering
A **Dendrogram** shows the cluster hierarchy
Hierarchical Methods

Agglomerative Methods
- Begin with n-clusters (each record its own cluster)
- Keep joining records into clusters until one cluster is left (the entire data set)
- Most popular

Divisive Methods
- Start with one all-inclusive cluster
- Repeatedly divide into smaller clusters
Measuring Distance

Between records

Between clusters
Measuring Distance Between Records
Distance Between Two Records

Euclidean Distance is most popular:

\[d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \cdots + (x_{ip} - x_{jp})^2} \]
Normalizing

Problem: Raw distance measures are highly influenced by scale of measurements

Solution: normalize (standardize) the data first
- Subtract mean, divide by std. deviation
- Also called **z-scores**
Example: Normalization

For 22 utilities:

Avg. sales = 8,914
Std. dev. = 3,550

Normalized score for Arizona sales:
\[(9,077 - 8,914)/3,550 = 0.046\]
For Categorical Data: Similarity

To measure the distance between records in terms of two 0/1 variables, create table with counts:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>1</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

Similarity metrics based on this table:

- Matching coef. = \((a+d)/p\)
- Jaquard’s coef. = \(d/(b+c+d)\)
 - Use in cases where a matching “1” is much greater evidence of similarity than matching “0” (e.g. “owns Corvette”)
Other Distance Measures

- Correlation-based similarity
- Statistical distance (Mahalanobis)
- Manhattan distance (absolute differences)
- Maximum coordinate distance
- Gower’s similarity (for mixed variable types: continuous & categorical)
Measuring Distance Between Clusters
Minimum Distance (Cluster A to Cluster B)

- Also called **single linkage**

- Distance between two clusters is the distance between the pair of records A_i and B_j that are closest

\[L(r,s) = \min(D(x_{ri}, x_{sj})) \]
Maximum Distance (Cluster A to Cluster B)

- Also called **complete linkage**

- Distance between two clusters is the distance between the pair of records A_i and B_j that are farthest from each other

$$L(r, s) = \max(D(x_{ri}, x_{sj}))$$
Average Distance

- Also called **average linkage**

- Distance between two clusters is the average of all possible pair-wise distances

\[L(r, s) = \frac{1}{n_r n_s} \sum_{i=1}^{n_r} \sum_{j=1}^{n_s} D(x_{ri}, x_{sj}) \]
Centroid Distance

- Distance between two clusters is the distance between the two cluster centroids.

- Centroid is the vector of variable averages for all records in a cluster.
The Hierarchical Clustering Steps (Using Agglomerative Method)

1. Start with \(n \) clusters (each record is its own cluster)
2. Merge two closest records into one cluster
3. At each successive step, the two clusters closest to each other are merged

Dendrogram, from bottom up, illustrates the process
Records 12 & 21 are closest & form first cluster
Reading the Dendrogram

See process of clustering: Lines connected lower down are merged earlier
- 10 and 13 will be merged next, after 12 & 21

Determining number of clusters: For a given “distance between clusters”, a horizontal line intersects the clusters that are that far apart, to create clusters
- E.g., at distance of 4.6 (red line in next slide), data can be reduced to 2 clusters -- The smaller of the two is circled
- At distance of 3.6 (green line) data can be reduced to 6 clusters, including the circled cluster
Validating Clusters
Interpretation

Goal: obtain meaningful and useful clusters

Caveats:
(1) Random chance can often produce apparent clusters
(2) Different cluster methods produce different results

Solutions:
- Obtain summary statistics
- Also review clusters in terms of variables not used in clustering
- Label the cluster (e.g. clustering of financial firms in 2008 might yield label like “midsize, sub-prime loser”)

Desirable Cluster Features

Stability – are clusters and cluster assignments sensitive to slight changes in inputs? Are cluster assignments in partition B similar to partition A?

Separation – check ratio of between-cluster variation to within-cluster variation (higher is better)
Nonhierarchical Clustering: K-Means Clustering
K-Means Clustering Algorithm

1. Choose # of clusters desired, k
2. Start with k random centroids (a partition into k random clusters)
3. repeat until (new assignment increases within-cluster dispersion)
 1. **assign** each record to the closest cluster (min distance between record and centroid)
 2. **Update** centroids, repeat step 3
Minimizing the total intra-cluster variance

Objective function:

\[J = \sum_{j=1}^{k} \sum_{i=1}^{n} \left\| x_i^{(j)} - c_j \right\|^2 \]
K-means Algorithm: Choosing k and Initial Partitioning

Choose k based on the how results will be used
e.g., “How many market segments do we want?”

Also experiment with slightly different k’s

Initial partition into clusters can be random, or based on domain knowledge
 If random partition, repeat the process with different random partitions
K-means Clustering – Details

- Initial centroids are often chosen randomly.
 - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- ‘Closeness’ is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to ‘Until relatively few points change clusters’
- Complexity is $O(n \times K \times I \times d)$
 - $n =$ number of points, $K =$ number of clusters,
 $I =$ number of iterations, $d =$ number of attributes
Two different K-means Clusterings

Original Points

Optimal Clustering

Sub-optimal Clustering
Importance of Choosing Initial Centroids

Iteration 6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
3
x
y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
3
x
y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
3
x
y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
3
x
y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
3
x
y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
3
x
y

Iteration 6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
3
x
y
Importance of Choosing Initial Centroids

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Iteration 6

X
Y
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
3
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
3
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
0.5
1
1.5
2
2.5
3

Evaluating K-means Clusters

- Most common measure is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster
 - To get SSE, we square these errors and sum them.

\[SSE = \sum_{i=1}^{K} \sum_{x \in C_i} \text{dist}^2(m_i, x) \]

- \(x \) is a data point in cluster \(C_i \) and \(m_i \) is the representative point for cluster \(C_i \)
 - can show that \(m_i \) corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase \(K \), the number of clusters
 - A good clustering with smaller \(K \) can have a lower SSE than a poor clustering with higher \(K \)
Importance of Choosing Initial Centroids ...
Importance of Choosing Initial Centroids ...

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5
Problems with Selecting Initial Points

- If there are K ‘real’ clusters then the chance of selecting one centroid from each cluster is small.
 - Chance is relatively small when K is large
 - If clusters are the same size, n, then

$$ P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K! n^K}{(Kn^K} = \frac{K!}{K^K} $$

- For example, if $K = 10$, then probability $= \frac{10!}{10^{10}} = 0.00036$
- Sometimes the initial centroids will readjust themselves in ‘right’ way, and sometimes they don’t
- Consider an example of five pairs of clusters
Starting with two initial centroids in one cluster of each pair of clusters
10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters
Starting with some pairs of clusters having three initial centroids, while other have only one.
Starting with some pairs of clusters having three initial centroids, while others have only one.
Solutions to Initial Centroids Problem

- Multiple runs
 - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
 - Select most widely separated
- Postprocessing
- Bisecting K-means
 - Not as susceptible to initialization issues
Updating Centers Incrementally

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid.

- An alternative is to update the centroids after each assignment (incremental approach):
 - Each assignment updates zero or two centroids.
 - More expensive.
 - Introduces an order dependency.
 - Never get an empty cluster.
 - Can use “weights” to change the impact.
 - A simpler version of Self Organizing Map neural network.
Pre-processing and Post-processing

- **Pre-processing**
 - Normalize the data
 - Eliminate outliers

- **Post-processing**
 - Eliminate small clusters that may represent outliers
 - Split ‘loose’ clusters, i.e., clusters with relatively high SSE
 - Merge clusters that are ‘close’ and that have relatively low SSE
 - Can use these steps during the clustering process
 - ISODATA
We chose $k = 3$

4 of the 8 variables are shown

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Fixed_charge</th>
<th>RoR</th>
<th>Cost</th>
<th>Load_factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster-1</td>
<td>0.89</td>
<td>10.3</td>
<td>202</td>
<td>57.9</td>
</tr>
<tr>
<td>Cluster-2</td>
<td>1.43</td>
<td>15.4</td>
<td>113</td>
<td>53</td>
</tr>
<tr>
<td>Cluster-3</td>
<td>1.06</td>
<td>9.2</td>
<td>151</td>
<td>54.4</td>
</tr>
</tbody>
</table>
Clusters 1 and 2 are relatively well-separated from each other, while cluster 3 not as much.
Within-Cluster Dispersion

Data summary (In Original coordinates)

<table>
<thead>
<tr>
<th>Cluster</th>
<th>#Obs</th>
<th>Average distance in cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster-1</td>
<td>12</td>
<td>1748.348058</td>
</tr>
<tr>
<td>Cluster-2</td>
<td>3</td>
<td>907.6919822</td>
</tr>
<tr>
<td>Cluster-3</td>
<td>7</td>
<td>3625.242085</td>
</tr>
<tr>
<td>Overall</td>
<td>22</td>
<td>2230.906692</td>
</tr>
</tbody>
</table>

Clusters 1 and 2 are relatively tight, cluster 3 very loose

Conclusion: Clusters 1 & 2 well defined, not so for cluster 3

Next step: try again with $k=2$ or $k=4$
Silhouette 실루엣 Peter J. Rousseeuw 1986

\[s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}} \]

- \(a(i)\) 데이터 \(i\) 와 같은 클러스터에 속한 다른 데이터들과의 평균 "거리"
- 작을수록?
- \(i\) 는 잘 "맞는" 클러스터에 소속됨
Silhouette 실루엣 Peter J. Rousseeuw 1986

\[s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}} \]

- \(b(i) \) 데이터 \(i \) 와 다른 클러스터에 속한 데이터들과의 평균 “거리” 가 최소인 “이웃” 클러스터의 데이터들 간 평균 거리
 - \(i \) 가 현재 클러스터 다음으로 “잘 맞는” 클러스터 (즉, “이웃”)
 - \(b(i) \) 가 크다면?
 - “이웃” 클러스터가 실제 별로 이웃이 아님
Silhouette 실루엣 Peter J. Rousseeuw 1986

\[s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}} \]

- \(b(i) \gg a(i) \) 라면?
 - 제대로 클러스터 됨
- \(b(i) \ll a(i) \) 라면?
 - \(i \) 는 이웃 클러스터로 가는 게 나음
Silhouette 실루엣 Peter J. Rousseeuw 1986

\[s(i) = \begin{cases}
1 - a(i)/b(i), & \text{if } a(i) < b(i) \\
0, & \text{if } a(i) = b(i) \\
b(i)/a(i) - 1, & \text{if } a(i) > b(i)
\end{cases} \]

• \(b(i) \gg a(i) \) 라면?
 • 제대로 클러스터 됨, \(s \Rightarrow 1 \)

• \(b(i) \ll a(i) \) 라면?
 • \(i \) 는 이웃 클러스터로 가는 게 나음, \(s \Rightarrow -1 \)
실루엣 plot

• 각 클러스터 별로,
 • 데이터 들을 $s(i)$ 큰 순서대로 정렬하여 수평선으로 표시
아래 데이터를 k-medoid 로 군집화

Figure 1: Ruspini data, n = 75
Silhouette plot of pam(x = daisy(ruspini), k = 3, diss : n = 75

3 clusters C_j

$\{ j : n_j \mid \text{ave}_{i \in C_j} s_i \}$

1: 35 | 0.53

2: 23 | 0.75

3: 17 | 0.67

Silhouette width s_i

Average silhouette width: 0.63
Silhouette plot of pam\(x = \text{daisy(ruspini)}, k = 4, \text{diss} : n = 75\)

4 clusters \(C_j\)

\(j : n_j \mid \text{ave}_{i \in C_j} s_i\)

1 : 20 \mid 0.73

2 : 23 \mid 0.75

3 : 17 \mid 0.67

4 : 15 \mid 0.8

Silhouette width \(s_i\)

Average silhouette width : 0.74
Silhouette plot of pam\((x = \text{daisy(ruspini)}, \, k = 5, \, \text{diss} : n = 75)\)

5 clusters C_j

\[j : n_j | \text{ave}_{i \in C_j} \, s_i \]

1 : 20 | 0.71
2 : 23 | 0.74
3 : 14 | 0.56
4 : 3 | 0.78
5 : 15 | 0.8

Average silhouette width : 0.71
Figure 3: Ruspini data with 4 medoids marked in red
Density based Clustering
Dunn Index (Dunn, 1974)

- ratio between the minimal inter-cluster distance to maximal intra-cluster distance.

\[D = \frac{\min_{1 \leq i < j \leq n} d(i, j)}{\max_{1 \leq k \leq n} d'(k)}, \]

- \(d(i,j) \) : the distance between clusters i and j
- \(d'(k) \) : the intra-cluster distance of cluster k
- clusters with high Dunn index are more desirable
Applications

- Data Exploration and Understanding
- Data Compression: codebook
- Market Segmentation
- Multiple Regression / Classification models
- Characterization of Normality in Novelty Detection
Summary

- Cluster analysis is an exploratory tool. Useful only when it produces meaningful clusters.
- **Hierarchical** clustering gives visual representation of different levels of clustering.
 - On other hand, due to non-iterative nature, it can be unstable, can vary highly depending on settings, and is computationally expensive.
Summary

- **Non-hierarchical** is computationally cheap and more stable; requires user to set k
- Can use both methods
- Be wary of chance results; data may not have definitive “real” clusters