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Clustering: The Main Idea 

Goal: Form groups (clusters) of similar records 

 

Used for segmenting markets into groups of similar 

customers 

 

Example:  Claritas segmented US neighborhoods 

based on demographics & income: “Furs & station 

wagons,” “Money & Brains”, … 

 



Other Applications 

 Periodic table of the elements 

 Classification of species 



Classification of Mammals  



Other Applications 

 Grouping securities in portfolios 

 Grouping firms for structural analysis of economy 

 Army uniform sizes 



Example: Public Utilities 

Goal:  find clusters of similar utilities 

 

Data: 22 firms, 8 variables 

Fixed-charge covering ratio 

Rate of return on capital 

Cost per kilowatt capacity 

Annual load factor 

Growth in peak demand 

Sales 

% nuclear 

Fuel costs per kwh 



Company Fixed_charge RoR Cost Load D Demand Sales Nuclear Fuel_Cost

Arizona 1.06 9.2 151 54.4 1.6 9077 0 0.628

Boston 0.89 10.3 202 57.9 2.2 5088 25.3 1.555

Central 1.43 15.4 113 53 3.4 9212 0 1.058

Commonwealth 1.02 11.2 168 56 0.3 6423 34.3 0.7

Con Ed NY 1.49 8.8 192 51.2 1 3300 15.6 2.044

Florida 1.32 13.5 111 60 -2.2 11127 22.5 1.241

Hawaiian 1.22 12.2 175 67.6 2.2 7642 0 1.652

Idaho 1.1 9.2 245 57 3.3 13082 0 0.309

Kentucky 1.34 13 168 60.4 7.2 8406 0 0.862

Madison 1.12 12.4 197 53 2.7 6455 39.2 0.623

Nevada 0.75 7.5 173 51.5 6.5 17441 0 0.768

New England 1.13 10.9 178 62 3.7 6154 0 1.897

Northern 1.15 12.7 199 53.7 6.4 7179 50.2 0.527

Oklahoma 1.09 12 96 49.8 1.4 9673 0 0.588

Pacific 0.96 7.6 164 62.2 -0.1 6468 0.9 1.4

Puget 1.16 9.9 252 56 9.2 15991 0 0.62

San Diego 0.76 6.4 136 61.9 9 5714 8.3 1.92

Southern 1.05 12.6 150 56.7 2.7 10140 0 1.108

Texas 1.16 11.7 104 54 -2.1 13507 0 0.636

Wisconsin 1.2 11.8 148 59.9 3.5 7287 41.1 0.702

United 1.04 8.6 204 61 3.5 6650 0 2.116

Virginia 1.07 9.3 174 54.3 5.9 10093 26.6 1.306



Low fuel cost, low sales 

Sales & Fuel Cost:  

3 rough clusters can be seen 

High fuel cost, low sales 

Low fuel cost, high sales 



Clustering is Ambiguous 

How many clusters? 

Four Clusters  Two Clusters  

Six Clusters  



Extension to More Than 2 Dimensions 

In prior example, clustering was done by eye 

 

Multiple dimensions require formal algorithm with  

 A distance measure 

 A way to use the distance measure in forming clusters 

 

We will consider two algorithms:  hierarchical and non-

hierarchical 



Hierarchical Clustering 
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Traditional Hierarchical Clustering 

Non-traditional Hierarchical Clustering Non-traditional Dendrogram 

Traditional Dendrogram 



Partitional Clustering 

Original Points A Partitional  Clustering 



Hierarchical Clustering 



A Dendrogram shows the cluster hierarchy 



Hierarchical Methods 

Agglomerative Methods 

 Begin with n-clusters (each record its own cluster) 

 Keep joining records into clusters until one cluster is 

left (the entire data set) 

 Most popular 

 

Divisive Methods 

 Start with one all-inclusive cluster 

 Repeatedly divide into smaller clusters 

 

 





Measuring Distance 

Between records 

 

Between clusters 

 



Measuring Distance Between Records 



Distance Between Two Records 

Euclidean Distance is most popular: 



Normalizing 

Problem: Raw distance measures are highly influenced 

by scale of measurements 

 

Solution: normalize (standardize) the data first 

 Subtract mean, divide by std. deviation 

 Also called z-scores 

 



Example: Normalization 

For 22 utilities: 

 

Avg. sales = 8,914 

Std. dev. = 3,550 

 

Normalized score for Arizona sales: 

(9,077-8,914)/3,550 = 0.046 

 



For Categorical Data: Similarity 

  

 

Similarity metrics based on this table: 

 Matching coef. = (a+d)/p 

 Jaquard’s coef. = d/(b+c+d) 

 Use in cases where a matching “1” is much greater 

evidence of similarity than matching “0” (e.g. “owns 

Corvette”) 

0 1

0 a b

1 c d

To measure the distance between records in terms 

of two 0/1 variables, create table with counts: 



Other Distance Measures 

 Correlation-based similarity 

 Statistical distance (Mahalanobis) 

 Manhattan distance (absolute differences) 

 Maximum coordinate distance 

 Gower’s similarity (for mixed variable types: 

continuous & categorical) 



Measuring Distance Between Clusters 



Minimum Distance  

(Cluster A to Cluster B) 

 Also called single linkage 

 

 Distance between two clusters is the distance 

between the pair of records Ai and Bj that are 

closest 



Maximum Distance 

(Cluster A to Cluster B) 

 Also called complete linkage 

 

 Distance between two clusters is the distance 

between the pair of records Ai and Bj that are 

farthest from each other 



Average Distance 

 Also called average linkage 

 

 Distance between two clusters is the average of all 

possible pair-wise distances 



Centroid Distance 

 Distance between two clusters is the distance between 

the two cluster centroids. 

 

 Centroid is the vector of variable averages for all 

records in a cluster 



The Hierarchical Clustering Steps (Using 

Agglomerative Method) 

1. Start with n clusters (each record is its own cluster) 

2. Merge two closest records into one cluster 

3. At each successive step, the two clusters closest to 

each other are merged 

 

Dendrogram, from bottom up, illustrates the process 

 



Records 12 & 21 are closest & form first cluster 

 



Reading the Dendrogram 

See process of clustering: Lines connected lower down 

are merged earlier 

 10 and 13 will be merged next, after 12 & 21 

 

Determining number of clusters: For a given “distance 

between clusters”, a horizontal line intersects the 

clusters that are that far apart, to create clusters 

 E.g., at distance of 4.6 (red line in next slide), data can be 

reduced to 2 clusters -- The smaller of the two is circled 

 At distance of 3.6 (green line) data can be reduced to 6 

clusters, including the circled cluster 





Validating Clusters 



Interpretation 

Goal: obtain meaningful and useful clusters 

Caveats: 

(1) Random chance can often produce apparent clusters 

(2) Different cluster methods produce different results 

Solutions: 

 Obtain summary statistics 

 Also review clusters in terms of variables not used in 

clustering 

 Label the cluster (e.g. clustering of financial firms in 

2008 might yield label like “midsize, sub-prime loser”) 



Desirable Cluster Features 

Stability – are clusters and cluster assignments 

sensitive to slight changes in inputs?  Are cluster 

assignments in partition B similar to partition A? 

 

 

Separation – check ratio of between-cluster variation 

to within-cluster variation (higher is better) 



Nonhierarchical Clustering: 

K-Means Clustering 



K-Means Clustering Algorithm 

1. Choose # of clusters desired, k   

2. Start with k random centroids (a partition into k 

random clusters) 

3. repeat until (new assignment increases within-

cluster dispersion) 

1. assign each record to the closest cluster (min 

distance between record and centroid) 

2. Update centroids, repeat step 3 

 



Minimizing  total intra-cluster variance 



K-means Algorithm:  

Choosing k and Initial Partitioning 

Choose k based on the how results will be used  

e.g., “How many market segments do we want?” 

 

Also experiment with slightly different k’s 

 

Initial partition into clusters can be random, or based 

on domain knowledge 

If random partition, repeat the process with different random 

partitions 

 



K-means Clustering – Details 

 Initial centroids are often chosen randomly. 

 Clusters produced vary from one run to another. 

 The centroid is (typically) the mean of the points in the 
cluster. 

 ‘Closeness’ is measured by Euclidean distance, cosine 
similarity, correlation, etc. 

 K-means will converge for common similarity measures 
mentioned above. 

 Most of the convergence happens in the first few iterations. 

 Often the stopping condition is changed to ‘Until relatively few points 
change clusters’ 

 Complexity is O( n * K * I * d ) 

 n = number of points, K = number of clusters,  
I = number of iterations, d = number of attributes 



Two different K-means Clusterings 
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Importance of Choosing Initial Centroids 
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Importance of Choosing Initial Centroids 
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Evaluating K-means Clusters 
 Most common measure is Sum of Squared Error (SSE) 

 For each point, the error is the distance to the nearest cluster 

 To get SSE, we square these errors and sum them. 

 

 

 

 x is a data point in cluster Ci and mi is the representative point for 
cluster Ci  

  can show that mi corresponds to the center (mean) of the cluster 

 Given two clusters, we can choose the one with the smallest error 

 One easy way to reduce SSE is to increase K, the number of 
clusters 

  A good clustering with smaller K can have a lower SSE than a poor 
clustering with higher K 
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Importance of Choosing Initial Centroids … 
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Importance of Choosing Initial Centroids … 
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Problems with Selecting Initial Points 

 If there are K ‘real’ clusters then the chance of selecting one 
centroid from each cluster is small.  

 Chance is relatively small when K is large 

 If clusters are the same size, n, then 
 

 
 
 
 

 For example, if K = 10, then probability = 10!/1010 = 0.00036 

 Sometimes the initial centroids will readjust themselves in 
‘right’ way, and sometimes they don’t 

 Consider an example of five pairs of clusters 



10 Clusters Example 
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Starting with two initial centroids in one cluster of each pair of clusters 



10 Clusters Example 
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Starting with two initial centroids in one cluster of each pair of clusters 



10 Clusters Example 

Starting with some pairs of clusters having three initial centroids, while other 

have only one. 
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10 Clusters Example 

Starting with some pairs of clusters having three initial centroids, while other 

have only one. 
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Solutions to Initial Centroids 

Problem 

 Multiple runs 

 Helps, but probability is not on your side 

 Sample and use hierarchical clustering to determine 
initial centroids 

 Select more than k initial centroids and then select 
among these initial centroids 

 Select most widely separated 

 Postprocessing 

 Bisecting K-means 

 Not as susceptible to initialization issues 



Updating Centers Incrementally 

 In the basic K-means algorithm, centroids are 

updated after all points are assigned to a centroid 

 

 An alternative is to update the centroids after each 

assignment (incremental approach) 

 Each assignment updates zero or two centroids 

 More expensive 

 Introduces an order dependency 

 Never get an empty cluster 

 Can use “weights” to change the impact 

 A simpler version of Self Organizing Map neural 

network 



Pre-processing and Post-processing 

 Pre-processing 

 Normalize the data 

 Eliminate outliers 
 

 Post-processing 

 Eliminate small clusters that may represent outliers 

 Split ‘loose’ clusters, i.e., clusters with relatively high 

SSE 

 Merge clusters that are ‘close’ and that have relatively 

low SSE 

 Can use these steps during the clustering process 

  ISODATA 



XLMiner Output:  Cluster Centroids 

  

We chose k = 3 

 

4 of the 8 variables are shown 

Cluster Fixed_charge RoR Cost Load_factor

Cluster-1 0.89 10.3 202 57.9

Cluster-2 1.43 15.4 113 53

Cluster-3 1.06 9.2 151 54.4



Distance Between Clusters 

  

Clusters 1 and 2 are relatively well-separated 

from each other, while cluster 3 not as much   

Distance 

between 

cluster 

Cluster-1 Cluster-2 Cluster-3

Cluster-1 0 5.03216253 3.16901457

Cluster-2 5.03216253 0 3.76581196

Cluster-3 3.16901457 3.76581196 0



Within-Cluster Dispersion 

  

Clusters 1 and 2 are relatively tight, cluster 3 very loose 

Conclusion: Clusters 1 & 2 well defined, not so for cluster 3 

 

Next step: try again with k=2 or k=4 

Data summary (In Original coordinates)

Cluster #Obs

Average 

distance in 

cluster

Cluster-1 12 1748.348058

Cluster-2 3 907.6919822

Cluster-3 7 3625.242085

Overall 22 2230.906692



 

 

• a(i) 데이터 i 와 같은 클러스터에 속한 다른 

데이터들과의 평균 “거리”   

• 작을수록?  

• i 는 잘 “맞는” 클러스터에  소속됨   

 

Silhouette 실루엣 Peter J. Rousseeuw 1986 

https://en.wikipedia.org/wiki/Peter_J._Rousseeuw


 

 

• b(i)  데이터 i 와 다른 클러스터에 속한 데이터들 

과의 평균 “거리” 가 최소인 “이웃” 클러스터의 

데이터들 간 평균 거리  

• i 가 현재 클러스터 다음으로 “잘 맞는” 클러스터 (즉, “이웃”) 

• b(i) 가 크다면?  

• “이웃” 클러스터가 실제 별로 이웃이 아님   
 

Silhouette 실루엣 Peter J. Rousseeuw 1986 

https://en.wikipedia.org/wiki/Peter_J._Rousseeuw


 

 

• b(i) >> a(i) 라면 ?    

• 제대로 클러스터 됨  

• b(i) << a(i) 라면 ?     

• i 는 이웃 클러스터로 가는 게 나음  

 

Silhouette 실루엣 Peter J. Rousseeuw 1986 

https://en.wikipedia.org/wiki/Peter_J._Rousseeuw


 

 

• b(i) >> a(i) 라면 ?    

• 제대로 클러스터 됨, s => 1  

• b(i) << a(i) 라면 ?     

• i 는 이웃 클러스터로 가는 게 나음, s => -1 

 

 

Silhouette 실루엣 Peter J. Rousseeuw 1986 

https://en.wikipedia.org/wiki/Peter_J._Rousseeuw


실루엣 plot  

 

 각 클러스터 별로,  

 데이터 들을 s(i) 큰 순서대로 정렬하여 수평선으로 

표시   

 



아래 데이터를 k-medoid 로 군집화 











Density based Clustering  



Dunn Index  (Dunn, 1974)  

 ratio between the minimal inter-cluster distance to 

maximal intra-cluster distance. 

 

 

 

 d(i,j) : the distance between clusters i and j 

 d '(k) : the intra-cluster distance of cluster k 

 clusters with high Dunn index are more 

desirable 



Applications 

 

 Data Exploration and Understanding  

 Data Compression: codebook  

 Market Segmentation  

 Multiple Regression / Classification models 

 Characterization of Normality in Novelty Detection  



Summary 

 Cluster analysis is an exploratory tool. Useful only 

when it produces meaningful clusters 

 Hierarchical clustering gives visual representation of 

different levels of clustering 

 On other hand, due to non-iterative nature, it can be 

unstable, can vary highly depending on settings, and is 

computationally expensive 



Summary 

 Non-hierarchical is computationally cheap and more 

stable; requires user to set k 

 Can use both methods 

 Be wary of chance results; data may not have 

definitive “real” clusters 

 

 


