Chapter 13 – Association Rules

Data Mining for Business Intelligence

Shmueli, Patel & Bruce

© Galit Shmueli and Peter Bruce 2010

What are Association Rules?

- Study of "what goes with what" co-occurrence = 동시 발생
 - "Customers who bought X also bought Y"
 - What symptoms go with what diagnosis
- Transaction-based or event-based
- Also called "market basket analysis" and "affinity analysis"
- Originated with study of customer transactions databases to determine associations among items purchased

Used in many recommender systems

Bound Away Last Train Home

Buy this title for only \$.01 when you get a new Amazon Visa® Card

Apply now and if you're approved instantly, save \$30 off your first purchase, earn 3% rewards, get a 0% APR,* and pay no

Amazon Visa discount: \$30.00 Applied to this item:- \$16.97 Discount remaining: \$13.03 (Don't show again)

Customers who bought this title also bought:

- <u>Time and Water</u> ~ Last Train Home (
 <u>why?</u>)
- <u>Cold Roses</u> ~ Ryan Adams & the Cardinals (\$ <u>why?</u>)
- <u>Tambourine</u> ~ Tift Merritt (\$\vec{V} Why?)
- Last Train Home ~ Last Train Home (
 <u>why?</u>)
- True North ~ Last Train Home (\$ why?)
- Universal United House of Prayer ~ Buddy Miller (\$ why?)
- Wicked Twisted Road [ENHANCED] ~ Reckless Kelly (
 <u>Why?</u>)

Generating Rules

Terms

"IF" part = antecedent "THEN" part = consequent

"Item set" = the items (e.g., products) comprising the antecedent or consequent

 Antecedent and consequent are *disjoint* (i.e., have no items in common)

Tiny Example: Phone Faceplates

Transaction	Faceplate Colors Purchased					
1	red	white	green			
2	white	orange				
3	white	blue				
4	red	white	orange			
5	red	blue				
6	white	blue				
7	white	orange				
8	red	white	blue	green		
9	red	white	blue			
10	yellow					

Many Rules are Possible

For example: Transaction 1 supports several rules, such as

- "If red, then white" ("If a red faceplate is purchased, then so is a white one")
- "If white, then red"
- "If red and white, then green"
- + several more

Frequent Item Sets

- Ideally, we want to create all possible combinations of items
- Problem: computation time grows exponentially as # items increases
- Solution: consider only "frequent item sets"
- Criterion for frequent: *support*

Support

Support = # (or percent) of transactions that include both the antecedent and the consequent

Example: support for the item set {red, white} is 4 out of 10 transactions, or 40%

Apriori Algorithm "선험" 알고리즘

Apriori property

- "실제 계산하지 않아도 (경험하지 않아도) 선험적으로 안다"
- If set X is frequent, any of its "nonempty" subset is frequent
- {빵,우유} 포함하는 transaction 비율이 5%
 이상이면, {빵}, {우유}를 포함하는 transaction
 비율이 모두 5% 이상임

Apriori property

- 대우
- If set X is NOT frequent, any superset containing X is NOT frequent
- If X = {D} is NOT frequent, {A, D} is NOT frequent.
- If X = {A, B} is NOT frequent, {A, B, C} is NOT frequent.
- {빵, 우유} 포함하는 transaction 비율이 5%
 미만이면, {빵, 우유, 버터} 포함하는 transaction
 비율도 5% 미만

Apriori property

- 알고리즘은 1 item set 을 먼저 구성한 후, 2 item set, 3 item set 순으로 차차 늘여 감
- 각 단계에서는 generate & scan 를 반복
 - Generate : 후보 itemset 구축
 - Scan : 실제 support 값을 계산하여 걸러냄
 - 전체 database 를 scan! 계산량
- a priori property 의 효과는?

Generating Frequent Item Sets

For k products...

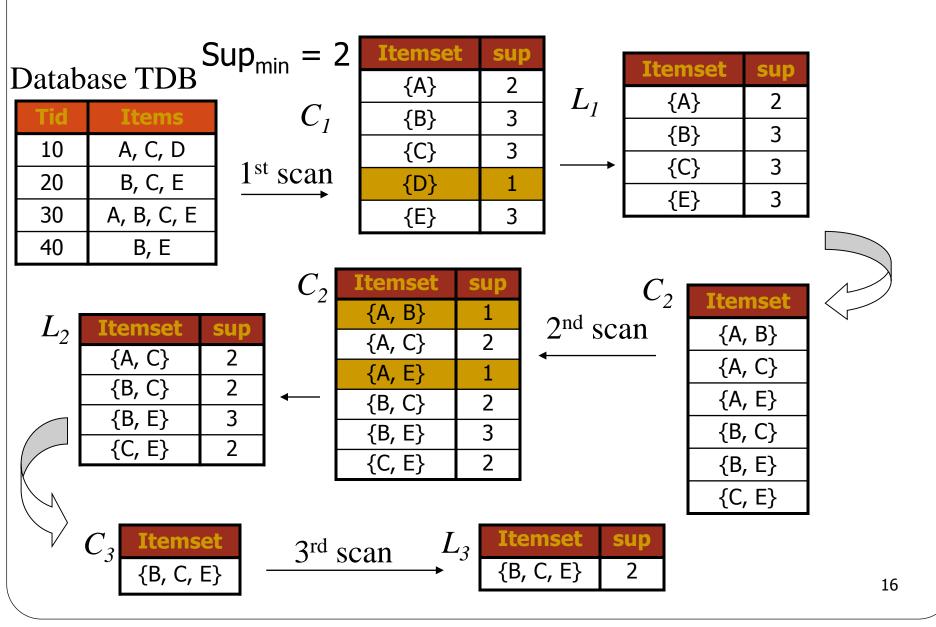
- 1. User sets a minimum support criterion
- 2. Next, generate list of one-item sets that meet the support criterion
- 3. Use the list of one-item sets to generate list of twoitem sets that meet the support criterion
- 4. Use list of two-item sets to generate list of threeitem sets
- 5. Continue up through *k*-item sets

Generating Frequent Item Sets

For k products...

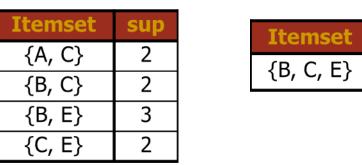
- 1. User sets a minimum support criterion
- Next, generate list of one-item sets that meet the support criterion = generate & scan
- 3. Use the list of one-item sets to generate list of twoitem sets that meet the support criterion
- 4. Use list of two-item sets to generate list of threeitem sets
- 5. Continue up through *k*-item sets

The Apriori Algorithm—An Example



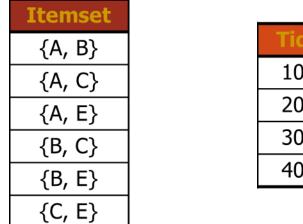
The Apriori Algorithm—An Example

• L2 에서 C3 도출 과정



• 후보 3-itemset: A,B,C / A,B,E / B,C,E frequent 한가?

- Confidence: the % of antecedent transactions that also have the consequent item set ~= 조건부 확률
- Confidence (A=>B) ~= P(B|A)



TidItems10A, C, D20B, C, E30A, B, C, E40B, E

■ A => B / B => A / ... 의 confidence 값은?

 Confidence: the % of antecedent transactions that also have the consequent item set ~= 조건부 확률

B => C, E / C => B, E / E => B, C 값은?
B, C => E / B, E => C / C, E => B 값은?

- Lift = confidence/(benchmark confidence)
- Benchmark confidence = transactions with consequent as % of all transactions
- Lift (A=>B) = Confidence (A=>B) / Confidence (B)
 ~= P(B|A) / P(B)
- Lift > 1 indicates a rule that is useful in finding consequent items sets (i.e., more useful than just selecting transactions randomly)

- Lift = confidence/(benchmark confidence)
- B 가 원래 frequent 한 것은 아닌지...
- Confidence (콜라 => 햄버거) high
- Confidence (다이어트콜라 => 햄버거) high 라도
- 그러나 P(햄버거) 가 높다면, 별 의미 없음

Lift = confidence/(benchmark confidence)

Tid	Items
10	A, C, D
20	B, C, E
30	A, B, C, E
40	В, Е

- A => B / B => A 의 lift는
- B => C, E / C => B, E / E => B, C 값은?
- B, C => E / B, E => C / C, E => B 값은?

Alternate Data Format: Binary Matrix

Transaction	Red	White	Blue	Orange	Green	Yellow
1	1	1	0	0	1	0
2	0	1	0	1	0	0
3	0	1	1	0	0	0
4	1	1	0	1	0	0
5	1	0	1	0	0	0
6	0	1	1	0	0	0
7	1	0	1	0	0	0
8	1	1	1	0	1	0
9	1	1	1	0	0	0
10	0	0	0	0	0	1

Process of Rule Selection

Generate all rules that meet specified support & confidence

- Find frequent item sets (those with sufficient support – see above)
- From these item sets, generate rules with sufficient confidence

Example: Rules from {red, white, green}

 $\{red, white\} => \{green\} with confidence = 2/4 = 50\%$

• [(support {red, white, green})/(support {red, white})]

{red, green} => {white} with confidence = 2/2 = 100%

[(support {red, white, green})/(support {red, green})]

Plus 4 more with confidence of 100%, 33%, 29% & 100%

If confidence criterion is 70%, report only rules 2, 3 and 6

All Rules (XLMiner Output)

Rule #	Conf. %	Antecedent (a)	Consequent (c)	Support(a)	Support(c)	Support(a U c)	Lift Ratio
1	100	Green=>	Red, White	2	4	2	2.5
2	100	Green=>	Red	2	6	2	1.666667
3	100	Green, White=>	Red	2	6	2	1.666667
4	100	Green=>	White	2	7	2	1.428571
5	100	Green, Red=>	White	2	7	2	1.428571
6	100	Orange=>	White	2	7	2	1.428571

Interpretation

- Lift ratio shows how effective the rule is in finding consequents (useful if finding particular consequents is important)
- Confidence shows the rate at which consequents will be found (useful in learning costs of promotion)
- Support measures overall impact

Caution: The Role of Chance

- Random data can generate apparently interesting association rules
- The more rules you produce, the greater this danger
- Rules based on large numbers of records are less subject to this danger
- 대응책은 human inspection

Example: Charles Book Club

ChildBks	YouthBks	CookBks	DoltYBks	RefBks	ArtBks	GeogBks	ItalCook	ItalAtlas	ItalArt	Florence
0	1	0	1	0	0	1	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	1	0	1	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0
1	0	0	0	0	1	0	0	0	0	1
0	1	0	0	0	0	0	0	0	0	0
0	1	0	0	1	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0

Row 1, e.g., is a transaction in which books were bought in the following categories: Youth, Do it Yourself, Geography

XLMiner Output

Rule #	Conf. %	Antecedent (a)	Consequent (c)	Support(a)	Support(c)	Support(a U c)	Lift Ratio
1	100	ItalCook=>	CookBks	227	862	227	2.320186
2	62.77	ArtBks, ChildBks=>	GeogBks	325	552	204	2.274247
3	54.13	CookBks, DoltYBks=>	ArtBks	375	482	203	2.246196
4	61.98	ArtBks, CookBks=>	GeogBks	334	552	207	2.245509
5	53.77	CookBks, GeogBks=>	ArtBks	385	482	207	2.230964
6	57.11	RefBks=>	ChildBks, CookBks	429	512	245	2.230842
7	52.31	ChildBks, GeogBks=>	ArtBks	390	482	204	2.170444
8	60.78	ArtBks, CookBks=>	DoltYBks	334	564	203	2.155264
9	58.4	ChildBks, CookBks=>	GeogBks	512	552	299	2.115885
10	54.17	GeogBks=>	ChildBks, CookBks	552	512	299	2.115885
11	57.87	CookBks, DoltYBks=>	GeogBks	375	552	217	2.096618
12	56.79	ChildBks, DoltYBks=>	GeogBks	368	552	209	2.057735

- Rules arrayed in order of lift
- Information can be compressed e.g., rules 2 and 7 have same trio of books

Practical Tips

- Item 선택: Proper Level of Abstraction 입도
 - Beverage: Cola : Coca Cola : Coca Cola 250ml: Diet Coca Cola 250ml

Practical Tips

Virtual Items

- Day of the week, Time of the day, Season, Region, Shopper's Gender/age
 - "IF shopper in 20's AND night THEN cup ramen"
 - 지역적, 시간적, 계절적 차이 파악 가능
 - 지점 별 차이점도
- Membership ID 정보
 - Other behavior 와의 연결을 통한 이해
 - 고객 주소, 과거 구매 내역
 - 포인트 카드

Practical Tips

- Other than Shopping basket?
- Transaction 으로 볼 수 있는 모든 items
 일련의 공정/검사를 거치는 경우, 각각이 item
 - 일련의 customer 구매 내역

Summary

- Association rules (or affinity analysis, or market basket analysis) produce rules on associations between items from a database of transactions
- Widely used in **recommender systems**
- Most popular method is Apriori algorithm
- To reduce computation, we consider only "frequent" item sets (=support)
- Performance is measured by confidence and lift
- Can produce a profusion of rules; review is required to identify useful rules and to reduce redundancy