Chapter 10 – Logistic Regression

Data Mining for Business Intelligence

Shmueli, Patel & Bruce

© Galit Shmueli and Peter Bruce 2010

Logistic Regression

- Extends idea of linear regression to situation where outcome variable is categorical
- Widely used, particularly where a structured model is useful to explain (=profiling) or to predict
- We focus on binary classification
 i.e. Y=0 or Y=1

The Logit

Goal: Find a function of the predictor variables that relates them to a 0/1 outcome

- Instead of Y as outcome variable (like in linear regression), we use a function of Y called the *logit*
- Logit can be modeled as a linear function of the predictors
- The logit can be mapped back to a probability, which, in turn, can be mapped to a class

Step 1: Logistic Response Function *p* = probability of belonging to class 1

Need to relate *p* to predictors with a function that guarantees $0 \le p \le 1$

Standard linear function (as shown below) does not:

$$p = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_q x_q$$

q = number of predictors

The Fix: use *logistic response function*

 $p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_q x_q)}}$

1

Equation 10.2 in textbook

The odds of an event are defined as:

eq. 10.3
$$Odds = \frac{p}{1-p}$$
 \leftarrow $p = \text{probability of event}$

Or, given the odds of an event, the probability of the event can be computed by:

eq. 10.4
$$p = \frac{Odds}{1 + Odds}$$

We can also relate the Odds to the predictors:

eq. 10.5
$$Odds = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q}$$

To get this result, substitute 10.2 into 10.4

Step 3: Take log on both sides

This gives us the logit:

$$\log(Odds) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q$$

log(Odds) = logit (eq. 10.6)

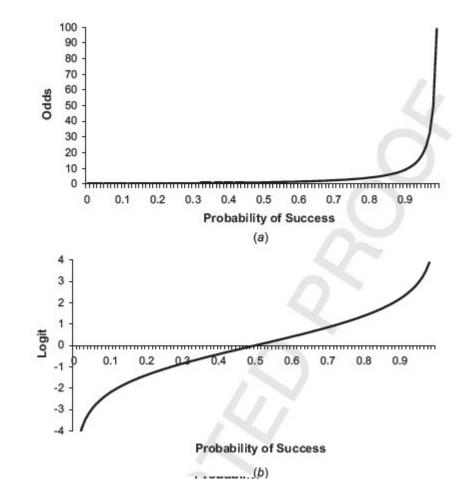
Logit, cont.

So, the logit is a linear function of predictors $x_1, x_2, ...$

Takes values from -infinity to +infinity

Review the relationship between logit, odds and probability

Odds (a) and Logit (b) as function of P



Example

Personal Loan Offer

Outcome variable: accept bank loan (0/1)

Predictors: Demographic info, and info about their bank relationship

Data preprocessing

- Partition 60% training, 40% validation
- Create 0/1 dummy variables for categorical predictors

 $EducProf = \begin{cases} 1 \text{ if education is } Professional \\ 0 \text{ otherwise} \end{cases}$ $EducGrad = \begin{cases} 1 \text{ if education is at } Graduate \text{ level} \\ 0 \text{ otherwise} \end{cases}$ $Securities = \begin{cases} 1 \text{ if customer has securities account in bank} \\ 0 \text{ otherwise} \end{cases}$ $CD = \begin{cases} 1 \text{ if customer has CD account in bank} \\ 0 \text{ otherwise} \end{cases}$ $Online = \begin{cases} 1 \text{ if customer uses online banking} \\ 0 \text{ otherwise} \end{cases}$ $CreditCard = \begin{cases} 1 \text{ if customer holds Universal Bank credit card} \\ 0 \text{ otherwise} \end{cases}$

Single Predictor Model

Modeling loan acceptance on income (x)

$$Prob(Personal \ Loan = Yes \mid Income = x) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

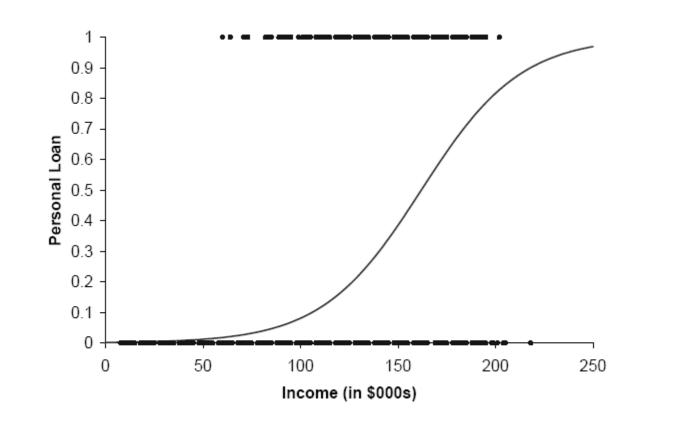
Fitted coefficients (more later): $b_0 = -6.3525$, $b_1 = -0.0392$

$$P(Personal \ Loan = Yes \mid Income = x) = \frac{1}{1 + e^{6.3525 - 0.0392x}}$$

-16

Seeing the Relationship

 $P(Personal\ Loan=\ Yes \mid Income=x) = \frac{1}{1+e^{6.3525-0.0392x}}$



Last step - classify

Model produces an estimated probability of being a "1"

- Convert to a classification by establishing cutoff level
- If estimated prob. > cutoff, classify as "1"

Ways to Determine Cutoff

- 0.50 is popular initial choice
- Additional considerations (see Chapter 5)
 - Maximize classification accuracy
 - Maximize sensitivity (subject to min. level of specificity)
 - Minimize false positives (subject to max. false negative rate)
 - Minimize expected cost of misclassification (need to specify costs)

Example, cont.

- Estimates of β 's are derived through an iterative process called *maximum likelihood estimation*
- Let's include all 12 predictors in the model now
- XLMiner's output gives coefficients for the logit, as well as odds for the individual terms

The Regression Model

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-13.20165825	2.46772742	0.0000009	*
Age	-0.04453737	0.09096102	0.62439483	0.95643985
Experience	0.05657264	0.09005365	0.5298661	1.05820346
Income	0.0657607	0.00422134	0	1.06797111
Family	0.57155931	0.10119002	0.0000002	1.77102649
CCAvg	0.18724874	0.06153848	0.00234395	1.20592725
Mortgage	0.00175308	0.00080375	0.02917421	1.00175464
Securities Account	-0.85484785	0.41863668	0.04115349	0.42534789
CD Account	3.46900773	0.44893095	0	32.10486984
Online	-0.84355801	0.22832377	0.00022026	0.43017724
CreditCard	-0.96406376	0.28254223	0.00064463	0.38134006
EducGrad	4.58909273	0.38708162	0	98.40509796
EducProf	4.52272701	0.38425466	0	92.08635712

Figure 10.3: Logistic regression coefficient table for personal loan acceptance as a function of 12 predictors.

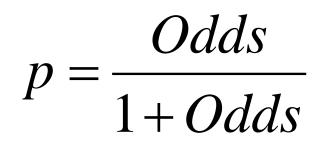
Estimated Equation for Logit (Equation 10.9)

 $\begin{aligned} \text{logit} = -13.201 - 0.045 Age + 0.057 Experience + 0.066 Income + 0.572 Family \\ + 0.18724874 CCAvg + 0.002 Mortgage - 0.855 Securities + 3.469 CD \\ - 0.844 Online - 0.964 Credit Card + 4.589 EducGrad + 4.523 EducProf \end{aligned}$

Equation for Odds (Equation 10.10)

odds(Personal Loan = Yes) = $e^{-13.201}(0.956)^{Age}$ (1.058)^{Experience} (1.068)^{Income} $\cdot (1.771)^{Family} (1.206)^{CCAvg} (1.002)^{Mortgage}$ $\cdot (0.425)^{Securities} (32.105)^{CD} (0.430)^{Online}$ $\cdot (0.381)^{CreditCard} (98.405)^{EducGrad} (92.086)^{EducProf}$

Converting to Probability



Interpreting Odds, Probability

For predictive classification, we typically use probability with a cutoff value

For explanatory purposes, odds have a useful interpretation:

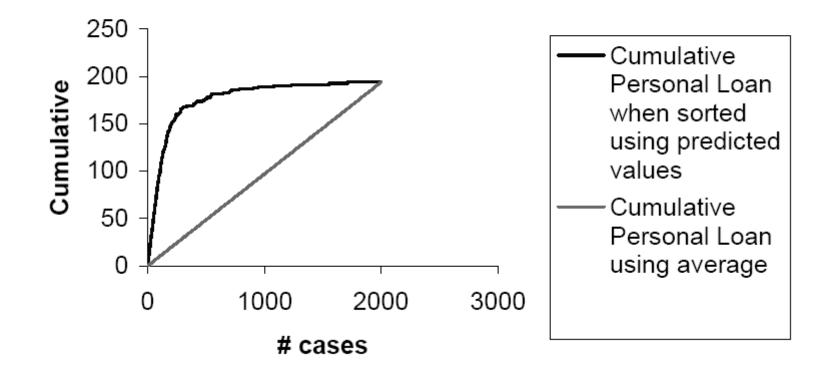
- If we increase x_1 by one unit, holding x_2 , $x_3 \dots x_q$ constant, then
- b₁ is the factor by which the odds of belonging to class 1 increase

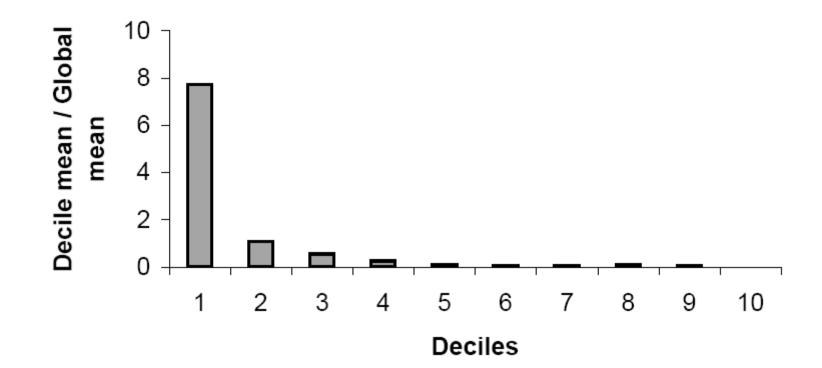
Loan Example: Evaluating Classification Performance

Performance measures: Confusion matrix and % of misclassifications

More useful in this example: lift

Lift chart (validation dataset)





Multicollinearity

Problem: As in linear regression, if one predictor is a linear combination of other predictor(s), model estimation will fail

• Note that in such a case, we have at least one redundant predictor

Solution: Remove extreme redundancies (by dropping predictors via variable selection – see next, or by data reduction methods such as PCA)

Variable Selection

This is the same issue as in linear regression

- The number of correlated predictors can grow when we create derived variables such as interaction terms (e.g. *Income x Family*), to capture more complex relationships
- Problem: Overly complex models have the danger of overfitting
- Solution: Reduce variables via automated selection of variable subsets (as with linear regression)

P-values for Predictors

- Test null hypothesis that coefficient = 0
- Useful for review to determine whether to include variable in model
- Key in profiling tasks, but less important in predictive classification

Complete Example: Predicting Delayed Flights DC to NY

Variables

Outcome: delayed or not-delayed

Predictors:

- Day of week
- Departure time
- Origin (DCA, IAD, BWI)
- Destination (LGA, JFK, EWR)
- Carrier
- Weather (1 = bad weather)

Data Preprocessing

Create binary dummies for the categorical variables

Partition 60%-40% into training/validation

The Fitted Model (not all 28 variables shown)

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-2.76648855	0.60903645	0.00000556	*
Weather	16.94781685	472.3040772	0.97137541	22926812
ORIGIN_BWI	0.31663841	0.407509	0.43715307	1.37250626
ORIGIN_DCA	-0.52621925	0.37920129	0.1652271	0.59083456
DEP_TIME_BLK_0700-0759	0.17635399	0.52038968	0.73469388	1.19286025
DEP_TIME_BLK_0800-0859	0.37122276	0.4879483	0.44678667	1.44950593
DEP_TIME_BLK_0900-0959	-0.2891154	0.61024719	0.6356656	0.74892575
DEP_TIME_BLK_1000-1059	-0.84254718	0.65849793	0.20072155	0.4306123
DEP_TIME_BLK_1100-1159	0.26919952	0.62188113	0.66510242	1.30891633
DEP_TIME_BLK_1200-1259	0.39577994	0.47712085	0.40681183	1.48554242
DEP_TIME_BLK_1300-1359	0.23689635	0.49711299	0.63368666	1.26730978
DEP_TIME_BLK_1400-1459	0.94953001	0.4257178	0.02571949	2.58449459
DEP_TIME_BLK_1500-1559	0.81428736	0.47320139	0.08528619	2.25756645
DEP_TIME_BLK_1600-1659	0.73656398	0.46096623	0.11007198	2.08874631
DEP_TIME_BLK_1700-1759	0.80683631	0.42013136	0.05480258	2.24080753
DEP_TIME_BLK_1800-1859	0.65816337	0.56922781	0.2475834	1.93124211
DEP_TIME_BLK_1900-1959	1.40413988	0.47974923	0.00342446	4.07202291
DEP_TIME_BLK_2000-2059	0.94785261	0.63308424	0.1343417	2.580163
DEP_TIME_BLK_2100-2159	0.76115495	0.45146817	0.09180449	2.14074731
DEST_EWR	-0.33785093	0.31752595	0.28732395	0.7133016
DEST_JFK	-0.66931868	0.2657896	0.01179471	0.5120573
CARRIER_CO	1.81500936	0.53502011	0.0006928	6.14113379
CARRIER_DH	1.25616693	0.52265555	0.016242	3.51193428
CARRIER_DL	0.41380161	0.33544913	0.21736139	1.51255703
CARRIER_MQ	1.73093832	0.32989427	0.00000015	5.64594936

Model Output (Validation Data)

Cut off Prob.Val. for Success (Updatable)

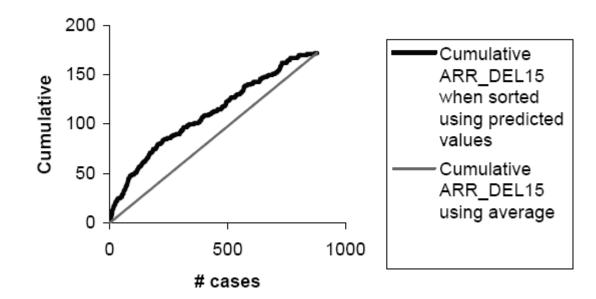
0.5

Classification Confusion Matrix				
	Predicted Class			
Actual Class	delayed non-delaye			
delayed	18	154		
non-delayed	3	705		

Error Report				
Class	# Cases	# Errors	% Error	
delayed	172	154	89.53	
non-delayed	708	3	0.42	
Overall	880	157	17.84	

Lift Chart

Lift chart (validation dataset)



After Variable Selection (Model with 7 Predictors)

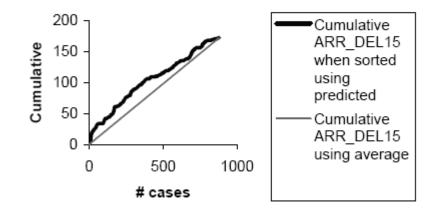
Validation Data scoring - Summary Report

Cut off Prob.Val. for Success (Updatable) 0.5

Classification Confusion Matrix			
	Predicted Class		
Actual Class	1	0	
1	13	159	
0	0	708	

Error Report				
Class	# Cases	# Errors	% Error	
1	172	159	92.44	
0	708	0	0.00	
Overall	880	159	18.07	

Lift chart (validation dataset)



7-Predictor Model

Input variables	Coefficient	Std. Error	p-value	Odds
Constant term	-1.76942575	0.11373349	0	×
Weather	16.77862358	479.4146118	0.97208124	19358154
DEP_TIME_BLK_0600-0659	-0.62896502	0.36761174	0.08709048	0.53314334
DEP_TIME_BLK_0900-0959	-1.26741421	0.47863296	0.00809724	0.28155872
DEP_TIME_BLK_1000-1059	-1.37123489	0.52464402	0.00895813	0.25379336
DEP_TIME_BLK_1300-1359	-0.6303032	0.3188065	0.04803356	0.53243035
Sun-Mon	0.52237105	0.15871418	0.00099736	1.68602061
Carrier_CO_OH_MQ_RU	0.68775123	0.15049717	0.00000488	1.98923719

Note that Weather is unknown at time of prediction (requires weather forecast or dropping that predictor)

Summary

- Logistic regression is similar to linear regression, except that it is used with a categorical response
- It can be used for explanatory tasks (=profiling) or predictive tasks (=classification)
- The predictors are related to the response Y via a nonlinear function called the *logit*
- As in linear regression, reducing predictors can be done via variable selection
- Logistic regression can be generalized to more than two classes (not in XLMiner)